Without using trigonometric tables, prove that:
(i) sin53° cos37° + cos53° sin37° = 1
(ii) cos54° cos36° − sin54° sin36° = 0
(iii) sec70° sin20° + cos20° cosec70° = 2
(iv) $\tan 15^{\circ} \tan 60^{\circ} \tan 75^{\circ}=\sqrt{3}$
(v) tan48° tan23° tan42° tan67° tan 45° = 1
(vi) (sin72° + cos18°)(sin72° − cos18°) = 0
(vii) cosec 39° cos 51° + tan 21° cot 69° – sec221° = 0
(i) LHS $=\sin 53^{0} \cos 37^{0}+\cos 53^{0} \sin 37^{0}$
$=\sin \left(90^{\circ}-37^{0}\right) \cos 37^{0}+\cos \left(90^{0}-37^{0}\right) \sin 37^{0}$
$=\cos 37^{0} \cos 37^{0}+\sin 37^{0} \sin 37^{0}$
$=\cos ^{2} 37^{0}+\sin ^{2} 37^{0}$
$=1$
$=\mathrm{RHS}$
(ii) $\mathrm{LHS}=\cos 54^{0} \cos 36^{\circ}-\sin 54^{0} \sin 36^{0}$
$=\cos \left(90^{\circ}-36^{0}\right) \cos 36^{0}-\sin \left(90^{\circ}-36^{0}\right) \sin 36^{0}$
$=\sin 36^{0} \cos 36^{0}-\cos 36^{0} \sin 36^{0}$
$=0$
$=\mathrm{RHS}$
(iii) LHS $=\sec 70^{\circ} \sin 20^{\circ}+\cos 20^{\circ} \operatorname{cosec} 70^{\circ}$
$=\sec \left(90^{\circ}-20^{\circ}\right) \sin 20^{\circ}+\cos 20^{\circ} \operatorname{cosec}\left(90^{\circ}-20^{\circ}\right)$
$=\operatorname{cosec} 20^{\circ} \cdot \frac{1}{\operatorname{cosec} 20^{\circ}}+\frac{1}{\sec 20^{\circ}} \cdot \sec 20^{\circ}$
$=1+1$
$=2$
$=\mathrm{RHS}$
(iv) To prove: $\tan 15^{\circ} \tan 60^{\circ} \tan 75^{\circ}=\sqrt{3}$
$\tan 15^{\circ} \tan 60^{\circ} \tan 75^{\circ}$
$=\tan 15^{\circ} \tan 60^{\circ} \tan \left(90^{\circ}-15^{\circ}\right)$
$=\tan 15^{\circ} \tan 60^{\circ} \cot 15^{\circ} \quad\left(\because \tan \left(90^{\circ}-\theta\right)=\cot \theta\right)$
$=\tan 15^{\circ} \tan 60^{\circ} \frac{1}{\tan 15^{\circ}} \quad\left(\because \cot \theta=\frac{1}{\tan \theta}\right)$
$=\tan 60^{\circ}$
$=\sqrt{3} \quad\left(\because \tan 60^{\circ}=\sqrt{3}\right)$
Hence, $\tan 15^{\circ} \tan 60^{\circ} \tan 75^{\circ}=\sqrt{3}$.
(v) LHS $=\tan 48^{\circ} \tan 23^{\circ} \tan 42^{\circ} \tan 67^{\circ}$
$=\cot \left(90^{\circ}-48^{\circ}\right) \cot \left(90^{\circ}-23^{\circ}\right) \tan 42^{\circ} \tan 67^{\circ}$
$=\cot 42^{\circ} \cot 67^{\circ} \tan 42^{\circ} \tan 67^{\circ}$
$=\frac{1}{\tan 42^{\circ}} \times \frac{1}{\tan 67^{\circ}} \times \tan 42^{\circ} \times \tan 67^{\circ}$
$=1$
$=$ RHS
(vi) LHS $=\left(\sin 72^{\circ}+\cos 18^{\circ}\right)\left(\sin 72^{\circ}-\cos 18^{\circ}\right)$
$=\left(\sin 72^{\circ}+\cos 18^{\circ}\right)\left[\cos \left(90^{\circ}-72^{\circ}\right)-\cos 18^{\circ}\right]$
$=\left(\sin 72^{\circ}+\cos 18^{\circ}\right)\left(\cos 18^{\circ}-\cos 18^{\circ}\right)$
$=\left(\sin 72^{\circ}+\cos 18^{\circ}\right)(0)$
$=0$
$=$ RHS
(vii) To prove: cosec39° cos51° + tan21° cot69° – sec221° = 0
$\operatorname{cosec} 39^{\circ} \cos 51^{\circ}+\tan 21^{\circ} \cot 69^{\circ}-\sec ^{2} 21^{\circ}$
$=\operatorname{cosec}\left(90^{\circ}-51^{\circ}\right) \cos 51^{\circ}+\tan 21^{\circ} \cot \left(90^{\circ}-21^{\circ}\right)-\sec ^{2} 21^{\circ}$
$=\sec 51^{\circ} \cos 51^{\circ}+\tan 21^{\circ} \tan 21^{\circ}-\sec ^{2} 21^{\circ} \quad\left(\because \cot \left(90^{\circ}-\theta\right)=\tan \theta\right.$ and $\left.\operatorname{cosec}\left(90^{\circ}-\theta\right)=\sec \theta\right)$
$=\sec 51^{\circ} \cos 51^{\circ}+\tan ^{2} 21^{\circ}-\sec ^{2} 21^{\circ}$
$=\sec 51^{\circ} \cos 51^{\circ}-\left(\sec ^{2} 21^{\circ}-\tan ^{2} 21^{\circ}\right) \quad$ (using the identity : $\sec ^{2} \theta-\tan ^{2} \theta=1$ )
$=\sec 51^{\circ} \cos 51^{\circ}-1$
$=\frac{1}{\cos 51^{\circ}} \cos 51^{\circ}-1 \quad\left(\because \sec \theta=\frac{1}{\cos \theta}\right)$
$=1-1$
$=0$
Hence, $\operatorname{cosec} 39^{\circ} \cos 51^{\circ}+\tan 21^{\circ} \cot 69^{\circ}-\sec ^{2} 21^{\circ}=0$