Without actually calculating the cubes, find the value of each of the following: <br/><br/> (i) $(-12)^{3}+(7)^{3}+(5)^{3}$<br/><br/>(ii) $(28)^{3}+(-15)^{3}+(-13)^{3}$
Solution:
(i) $(-12)^{3}+(7)^{3}+(5)^{3}$
Let $x=-12, y=7$, and $z=5$
It can be observed that,
$x+y+z=-12+7+5=0$
It is known that if $x+y+z=0$, then
$x^{3}+y^{3}+z^{3}=3 x y z$
$\therefore(-12)^{3}+(7)^{3}+(5)^{3}=3(-12)(7)(5)$
$=-1260$
(ii) $(28)^{3}+(-15)^{3}+(-13)^{3}$
Let $x=28, y=-15$, and $z=-13$
It can be observed that,
$x+y+z=28+(-15)+(-13)=28-28=0$
It is known that if $x+y+z=0$, then
$x^{3}+y^{3}+z^{3}=3 x y z$
$\therefore(28)^{3}+(-15)^{3}+(-13)^{3}=3(28)(-15)(-13)$
$=16380$
(i) $(-12)^{3}+(7)^{3}+(5)^{3}$
Let $x=-12, y=7$, and $z=5$
It can be observed that,
$x+y+z=-12+7+5=0$
It is known that if $x+y+z=0$, then
$x^{3}+y^{3}+z^{3}=3 x y z$
$\therefore(-12)^{3}+(7)^{3}+(5)^{3}=3(-12)(7)(5)$
$=-1260$
(ii) $(28)^{3}+(-15)^{3}+(-13)^{3}$
Let $x=28, y=-15$, and $z=-13$
It can be observed that,
$x+y+z=28+(-15)+(-13)=28-28=0$
It is known that if $x+y+z=0$, then
$x^{3}+y^{3}+z^{3}=3 x y z$
$\therefore(28)^{3}+(-15)^{3}+(-13)^{3}=3(28)(-15)(-13)$
$=16380$