While measuring the side of an equilateral triangle an error of k % is made, the percentage error in its area is
Question:
While measuring the side of an equilateral triangle an error of k % is made, the percentage error in its area is
(a) $k \%$
(b) $2 k \%$
(C) $\frac{k}{2} \%$
(d) $3 k \%$
Solution:
(b) 2k%
Let x be the side of the triangle and y be its area.
$\frac{\Delta x}{x} \times 100=k$
Also, $y=\frac{\sqrt{3}}{4} x^{2}$
$\Rightarrow \frac{d y}{d x}=\frac{\sqrt{3}}{2} x$
$\Rightarrow \frac{\Delta y}{y}=\frac{\sqrt{3} x}{2 y} d x=\frac{2}{x} \times \frac{k x}{100}$
$\Rightarrow \frac{\Delta y}{y} \times 100=2 k$
Hence, the error in the area of the triangle is $2 k \%$.