Which term of the following sequences:
(a) $2,2 \sqrt{2}, 4, \ldots$ is 128 ?
(b) $\sqrt{3}, 3,3 \sqrt{3}, \ldots$ is 729 ?
(c) $\frac{1}{3}, \frac{1}{9}, \frac{1}{27}, \ldots$ is $\frac{1}{19683}$ ?
(a) The given sequence is $2,2 \sqrt{2}, 4, \ldots$
Here, $a=2$ and $r=\frac{2 \sqrt{2}}{2}=\sqrt{2}$
Let the $n^{\text {th }}$ term of the given sequence be 128 .
$a_{n}=a r^{n-1}$
$\Rightarrow(2)(\sqrt{2})^{n-1}=128$
$\Rightarrow(2)(2)^{\frac{n-1}{2}}=(2)^{7}$
$\Rightarrow(2)^{\frac{n-1}{2}+1}=(2)^{7}$
$\therefore \frac{n-1}{2}+1=7$
$\Rightarrow \frac{n-1}{2}=6$
$\Rightarrow n-1=12$
$\Rightarrow n=13$
Thus, the $13^{\text {th }}$ term of the given sequence is 128 .
(b) The given sequence is $\sqrt{3}, 3,3 \sqrt{3}, \ldots$
Here, $a=\sqrt{3}$ and $r=\frac{3}{\sqrt{3}}=\sqrt{3}$
Let the $n^{\text {th }}$ term of the given sequence be 729 .
$a_{n}=a r^{n-1}$
$\therefore a r^{n-1}=729$
$\Rightarrow(\sqrt{3})(\sqrt{3})^{n-1}=729$
$\Rightarrow(3)^{\frac{1}{2}}(3)^{\frac{n-1}{2}}=(3)^{6}$
$\Rightarrow(3)^{\frac{1}{2}+\frac{n-1}{2}}=(3)^{6}$
$\therefore \frac{1}{2}+\frac{n-1}{2}=6$
$\Rightarrow \frac{1+n-1}{2}=6$
$\Rightarrow n=12$
Thus, the $12^{\text {th }}$ term of the given sequence is 729 .
(c) The given sequence is $\frac{1}{3}, \frac{1}{9}, \frac{1}{27}, \ldots$
Here, $a=\frac{1}{3}$ and $r=\frac{1}{9} \div \frac{1}{3}=\frac{1}{3}$
Let the $n^{\text {th }}$ term of the given sequence be $\frac{1}{19683}$.
$a_{n}=a r^{n-1}$
$\therefore a r^{n-1}=\frac{1}{19683}$
$\Rightarrow\left(\frac{1}{3}\right)\left(\frac{1}{3}\right)^{n-1}=\frac{1}{19683}$
$\Rightarrow\left(\frac{1}{3}\right)^{n}=\left(\frac{1}{3}\right)^{9}$
$\Rightarrow n=9$
Thus, the $9^{\text {th }}$ term of the given sequence is $\frac{1}{19683}$