Which of the following is not correct?
(a) $|A|=\left|A^{T}\right|$, where $A=\left[a_{i j}\right]_{3 \times 3}$
(b) $|k A|=\left|k^{3}\right|$, where $A=\left[a_{i j}\right]_{3 \times 3}$
(c) If $A$ is a skew-symmetric matrix of odd order, then $|A|=0$
(d) $\left|\begin{array}{ll}a+b & c+d \\ e+f & g+h\end{array}\right|=\left|\begin{array}{ll}a & c \\ e & g\end{array}\right|+\left|\begin{array}{ll}b & d \\ f & h\end{array}\right|$
(d) $\left|\begin{array}{ll}a+b & c+d \\ e+f & g+h\end{array}\right|=\left|\begin{array}{ll}a & c \\ e & g\end{array}\right|+\left|\begin{array}{ll}b & d \\ f & h\end{array}\right|$
$\mid a+b c+d$
$e+f g+h|=| a+b c$
$e+f g|+| a+b d$
$e+f h \mid$
$=\mid a c$
$e \quad g|+| b c$
$f \quad g|+| a b$
$e \quad h|+| b d$
$f \quad h \mid$