Which of the following functions are strictly decreasing on $\left(0, \frac{\pi}{2}\right) ?$
(A) cos x (B) cos 2x (C) cos 3x (D) tan x
(A) Let $f_{1}(x)=\cos x$.
$\therefore f_{1}^{\prime}(x)=-\sin x$
In interval $\left(0, \frac{\pi}{2}\right), f_{1}^{\prime}(x)=-\sin x<0$
$\therefore f_{1}(x)=\cos x$ is strictly decreasing in interval $\left(0, \frac{\pi}{2}\right)$.
(B) Let $f_{2}(x)=\cos 2 x$.
$\therefore f_{2}^{\prime}(x)=-2 \sin 2 x$
Now, $0
$\therefore f_{2}^{\prime}(x)=-2 \sin 2 x<0$ on $\left(0, \frac{\pi}{2}\right)$
$\therefore f_{2}(x)=\cos 2 x$ is strictly decreasing in interval $\left(0, \frac{\pi}{2}\right)$.
(C) Let $f_{3}(x)=\cos 3 x$.
$\therefore f_{3}^{\prime}(x)=-3 \sin 3 x$
Now, $f_{3}^{\prime}(x)=0$
$\Rightarrow \sin 3 x=0 \Rightarrow 3 x=\pi$, as $x \in\left(0, \frac{\pi}{2}\right)$
$\Rightarrow x=\frac{\pi}{3}$
The point $x=\frac{\pi}{3}$ divides the interval $\left(0, \frac{\pi}{2}\right)$ into two disjoint intervals
i.e., $0\left(0, \frac{\pi}{3}\right)$ and $\left(\frac{\pi}{3}, \frac{\pi}{2}\right)$.
Now, in interval $\left(0, \frac{\pi}{3}\right), f_{3}(x)=-3 \sin 3 x<0\left[\right.$ as $\left.0 $f_{3}$ is strictly decreasing in interval $\left(0, \frac{\pi}{3}\right)$. However, in interval $\left(\frac{\pi}{3}, \frac{\pi}{2}\right), f_{3}(x)=-3 \sin 3 x>0\left[\right.$ as $\left.\frac{\pi}{3} $\therefore f_{3}$ is strictly increasing in interval $\left(\frac{\pi}{3}, \frac{\pi}{2}\right)$. Hence, $f_{3}$ is neither increasing nor decreasing in interval $\left(0, \frac{\pi}{2}\right)$. (D) Let $f_{4}(x)=\tan x$. $\therefore f_{4}^{\prime}(x)=\sec ^{2} x$ In interval $\left(0, \frac{\pi}{2}\right), f_{4}^{\prime}(x)=\sec ^{2} x>0$ $\therefore f_{4}$ is strictly increasing in interval $\left(0, \frac{\pi}{2}\right)$. Therefore, functions $\cos x$ and $\cos 2 x$ are strictly decreasing in $\left(0, \frac{\pi}{2}\right)$. Hence, the correct answers are A and B.