Question:
Which of the following are pairs of equal sets?
$E=\left\{x: x \in Z, x^{2} \leq 4\right\}$ and $F=\left\{x: x \in Z, x^{2}=4\right\}$
Solution:
Equal Sets = Two sets A and B are said to be equal if they have exactly the
same elements & we write A = B
We have
$E=\left\{x: x \in Z, x^{2} \leq 4\right\}$
Here, $x \in Z$ and $x^{2} \leq 4$
If $x=-2$, then $x^{2}=(-2)^{2}=4=4$
If $x=-1$, then $x^{2}=(-1)^{2}=1<4$
If $x=0$, then $x^{2}=(0)^{2}=0<4$
If $x=1$, then $x^{2}=(1)^{2}=1<4$
If $x=2$, then $x^{2}=(2)^{2}=4=4$
So,
$E=\{-2,-1,0,1,2\}$
and $F=\left\{x: x \in Z, x^{2}=4\right\}$
Here, $x \in Z$ and $x^{2}=4$
If $x=-2$, then $x^{2}=(-2)^{2}=4=4$
If $x=2$, then $x^{2}=(2)^{2}=4=4$
So, $F=\{-2,2\}$
∴ E ≠ F because the elements in the both the sets are not equal.