Question:
Which of the following is true for $\mathrm{y}(\mathrm{x})$ that satisfies the differential equation
$\frac{d y}{d x}=x y-1+x-y ; y(0)=0$
Correct Option: 1
Solution:
$\frac{d y}{d x}=(1+y)(x-1)$
$\frac{d y}{(y+1)}=(x-1) d x$
Integrate $\ln (y+1)=\frac{x^{2}}{2}-x+c$
$(0,0) \Rightarrow c=0 \Rightarrow y=e^{\left(\frac{x^{2}}{2}-x\right)}-1$