When the tangent to the curve y = x log x is parallel to the chord joining the points (1, 0) and (e, e), the value of x is
(a) $e^{1 / 1-e}$
(b) $e^{(e-1)(2 e-1)}$
(c) $e^{\frac{2 e-1}{e-1}}$
(d) $\frac{e-1}{e}$
(a) $e^{1 / 1-e}$
Given:
$y=f(x)=x \log x$
Differentiating the given function with respect to x, we get
$f^{\prime}(x)=1+\log x$
$\Rightarrow$ Slope of the tangent to the curve $=1+\log x$
Also,
Slope of the chord joining the points $(1,0)$ and $(e, e),(m)=\frac{e}{e-1}$
The tangent to the curve is parallel to the chord joining the points $(1,0)$ and $(e, e)$.
$\therefore m=1+\log x$
$\Rightarrow \frac{e}{e-1}=1+\log x$
$\Rightarrow \frac{e}{e-1}-1=\log x$
$\Rightarrow \frac{e-e+1}{e-1}=\log x$
$\Rightarrow \frac{1}{e-1}=\log x$
$\Rightarrow x=e^{\frac{1}{e-1}}$