$x\left(x^{2}-1\right) \frac{d y}{d x}=1 ; y=0$ when $x=2$
$x\left(x^{2}-1\right) \frac{d y}{d x}=1$
$\Rightarrow d y=\frac{d x}{x\left(x^{2}-1\right)}$
$\Rightarrow d y=\frac{1}{x(x-1)(x+1)} d x$
Integrating both sides, we get:
$\int d y=\int \frac{1}{x(x-1)(x+1)} d x$ ...(1)
Let $\frac{1}{x(x-1)(x+1)}=\frac{A}{x}+\frac{B}{x-1}+\frac{C}{x+1}$. ...(2)
$\Rightarrow \frac{1}{x(x-1)(x+1)}=\frac{A(x-1)(x+1)+B x(x+1)+C x(x-1)}{x(x-1)(x+1)}$
$=\frac{(A+B+C) x^{2}+(B-C) x-A}{x(x-1)(x+1)}$
Comparing the coefficients of $x^{2}, x_{t}$ and constant, we get:
$A=-1$
$B-C=0$
$A+B+C=0$
Solving these equations, we get $B=\frac{1}{2}$ and $C=\frac{1}{2}$.
Substituting the values of A, B, and C in equation (2), we get:
$\frac{1}{x(x-1)(x+1)}=\frac{-1}{x}+\frac{1}{2(x-1)}+\frac{1}{2(x+1)}$
Therefore, equation (1) becomes:
$\int d y=-\int \frac{1}{x} d x+\frac{1}{2} \int \frac{1}{x-1} d x+\frac{1}{2} \int \frac{1}{x+1} d x$
$\Rightarrow y=-\log x+\frac{1}{2} \log (x-1)+\frac{1}{2} \log (x+1)+\log k$
$\Rightarrow y=\frac{1}{2} \log \left[\frac{k^{2}(x-1)(x+1)}{x^{2}}\right]$ ...(3)
Now, $y=0$ when $x=2$.
$\Rightarrow 0=\frac{1}{2} \log \left[\frac{k^{2}(2-1)(2+1)}{4}\right]$
$\Rightarrow \log \left(\frac{3 k^{2}}{4}\right)=0$
$\Rightarrow \frac{3 k^{2}}{4}=1$
$\Rightarrow 3 k^{2}=4$
$\Rightarrow k^{2}=\frac{4}{3}$
Substituting the value of $k^{2}$ in equation (3), we get:
$y=\frac{1}{2} \log \left[\frac{4(x-1)(x+1)}{3 x^{2}}\right]$
$y=\frac{1}{2} \log \left[\frac{4\left(x^{2}-1\right)}{3 x^{2}}\right]$