Question:
What will be the height of a cuboid of volume 168 m3, if the area of its base is 28 m2?
Solution:
Volume of the cuboid $=168 \mathrm{~m}^{3}$
Area of its base $=28 \mathrm{~m}^{2}$
Let $h \mathrm{~m}$ be the height of the cuboid.
Now, we have the following:
Area of the rectangular base $=$ lenght $\times$ breadth
Volume of the cuboid $=$ lenght $\times$ breadth $\times$ height
$\Rightarrow$ Volume of the cuboid $=($ area of the base $) \times$ height
$\Rightarrow 168=28 \times h$
$\Rightarrow h=\frac{168}{28}=6 \mathrm{~m}$
$\therefore$ The height of the cuboid is $6 \mathrm{~m}$.