What is the value of 6 tan2θ−6cos2θ.

Question:

What is the value of $6 \tan ^{2} \theta-\frac{6}{\cos ^{2} \theta}$.

Solution:

We have,

$6 \tan ^{2} \theta-\frac{6}{\cos ^{2} \theta}=6 \tan ^{2} \theta-6 \sec ^{2} \theta$

$=-6\left(\sec ^{2} \theta-\tan ^{2} \theta\right)$

We know that, $\sec ^{2} \theta-\tan ^{2} \theta=1$

Therefore, $6 \tan ^{2} \theta-\frac{6}{\cos ^{2} \theta}=-6$

 

Leave a comment