Question:
What is the value of $\left(1+\tan ^{2} \theta\right)(1-\sin \theta)(1+\sin \theta) ?$
Solution:
We have,
$\left(1+\tan ^{2} \theta\right)(1-\sin \theta)(1+\sin \theta)=\left(1+\tan ^{2} \theta\right)\{(1-\sin \theta)(1+\sin \theta)\}$
$=\left(1+\tan ^{2} \theta\right)\left(1-\sin ^{2} \theta\right)$
We know that,
$\sec ^{2} \theta-\tan ^{2} \theta=1$
$\Rightarrow \sec ^{2} \theta=1+\tan ^{2} \theta$
$\sin ^{2} \theta+\cos ^{2} \theta=1$
$\Rightarrow \cos ^{2} \theta=1-\sin ^{2} \theta$
Therefore,
$\left(1+\tan ^{2} \theta\right)(1-\sin \theta)(1+\sin \theta)=\sec ^{2} \theta \times \cos ^{2} \theta$
$=\frac{1}{\cos ^{2} \theta} \times \cos ^{2} \theta$
$=1$