Question:
What is the smallest positive integer $n$ for which $(1+i)^{2 n}=(1-i)^{2 n} ?$
Solution:
$(1+i)^{2 n}=(1-i)^{2 n}$
$\Rightarrow\left[(1+i)^{2}\right]^{n}=\left[(1-i)^{2}\right]^{n}$
$\Rightarrow\left(1^{2}+i^{2}+2 i\right)^{n}=\left(1^{2}+i^{2}-2 i\right)^{n}$
$\Rightarrow(1-1+2 i)^{n}=(1-1-2 i)^{n} \quad\left[\because i^{2}=-1\right]$
$\Rightarrow(2 i)^{n}=(-2 i)^{n}$
$\Rightarrow(2 i)^{n}=(-1)^{n}(2 i)^{n}$
$\Rightarrow(-1)^{n}=1$
$\Rightarrow n$ is a multiple of 2
Thus, the smallest positive integer $n$ for which $(1+i)^{2 n}=(1-i)^{2 n}$ is 2 .