If manoj paid ₹ 3990 for it, how much did vinod pay for the watch?
Let the CP of the watch for Vinod be ₹x.
SP = Gain + CP
$=12 \%$ of $\mathrm{CP}+x$
$=\frac{12}{100} x+x$
$=₹ \frac{112}{100} x$
Now,
SP of the water for Vinod will be the CP of the watch for Arun.
SP of the watch for Arun
$=\mathrm{CP}-$ Loss
$=\frac{112}{100} x-5 \%$ of $\frac{112}{100} x$
$=\frac{112}{100} x-\frac{5}{100}\left(\frac{112}{100} x\right)$
$=\frac{112}{100} x\left(1-\frac{5}{100}\right)$
$=₹ \frac{112}{100} x\left(\frac{95}{100}\right)$
SP of the watch for Arun will be the CP of the watch for Manoj.
But, CP of the watch for Manoj = ₹3,990
So,$\frac{112}{100} x\left(\frac{95}{100}\right)=3990$
$\Rightarrow x=\frac{3990 \times 100 \times 100}{11 \times 95}=3750$
Thus, Vinod paid ₹3,750 for the watch.