Question:
Very-Short-Answer Questions
If one zero of the polynomial $x^{2}-4 x+1$ is $(2+\sqrt{3})$, write the other zero.
Solution:
Let the other zero of the given polynomial be $\alpha$.
Now,
Sum of the zeroes of the given polynomial $=\frac{-(-4)}{1}=4$
$\therefore \alpha+(2+\sqrt{3})=4$
$\Rightarrow \alpha=4-2-\sqrt{3}=2-\sqrt{3}$
Hence, the other zero of the given polynomial is $(2-\sqrt{3})$.