Verify whether the following are true or false.
(i) -3 is a zero of at – 3
(ii) -1/3 is a zero of 3x+1
(iii) -4/5 is a zero of 4 – 5y
(iv) 0 and 2 are the zeroes of t2 – 2t
(v) -3 is a zero of y2 +y-6
(i) False, because zero of $x-3$ is $3 .$ $[\because x-3=0 \Rightarrow x=3]$
(ii) True, because zero of $3 x+1$ is $-\frac{1}{3}$. $\left[\because 3 x+1=0 \Rightarrow x=\frac{-1}{3}\right]$
(iii) False, because zero of $4-5 y$ is $\frac{4}{5}$. $\left[\because 4-5 y=0 \Rightarrow y=\frac{4}{5}\right]$
(iv) True, now $t^{2}-2 t=t(t-2)$
Hence, zeroes of $t^{2}-2 t$ are 0 and 2 .
(v) True,
Now,
$y^{2}+y-6=y^{2}+3 y-2 y-6$ [by splitting middle term]
$=y(y+3)-2(y+3)$
$=(y-2)(y+3)$
Hence, the zeroes of $y^{2}+y-6$ are 2 and $-3$.