Verify the following:

Question:

Verify the following:

(i) $\left(\frac{3}{4}+\frac{-2}{5}\right)+\frac{-7}{10}=\frac{3}{4}+\left(\frac{-2}{5}+\frac{-7}{10}\right)$

(ii) $\left(\frac{-7}{11}+\frac{2}{-5}\right)+\frac{-13}{22}=\frac{-7}{11}+\left(\frac{2}{-5}+\frac{-13}{22}\right)$

(iii) $-1+\left(\frac{-2}{3}+\frac{-3}{4}\right)=\left(-1+\frac{-2}{3}\right)+\frac{-3}{4}$

 

Solution:

1. $\mathrm{LHS}=\left\{\left(\frac{3}{4}+\frac{-2}{5}\right)+\frac{-7}{10}\right\}$

$\left\{\left(\frac{15-8}{20}\right)+\frac{-7}{10}\right\}=\left(\frac{7}{20}+\frac{-7}{10}\right)=\left(\frac{7}{20}+\frac{-14}{20}\right)=\left(\frac{7+(-14)}{20}\right)=\frac{-7}{20}$

$\mathrm{RHS}=\left\{\frac{3}{4}+\left(\frac{-2}{5}+\frac{-7}{10}\right)\right\}$

$\left\{\frac{3}{4}+\left(\frac{-4}{10}+\frac{-7}{10}\right)\right\}=\left\{\frac{3}{4}+\left(\frac{-4-7}{10}\right)\right\}=\left\{\frac{3}{4}+\left(\frac{-11}{10}\right)\right\}=\left(\frac{3}{4}+\frac{-11}{10}\right)=\left(\frac{15}{20}+\frac{-22}{20}\right)=\left(\frac{15-22}{20}\right)=\frac{-7}{20}$

$\therefore\left(\frac{3}{4}+\frac{-2}{5}\right)+\frac{-7}{10}=\frac{3}{4}+\left(\frac{-2}{5}+\frac{-7}{10}\right)$

2. $\mathrm{LHS}=\left\{\left(\frac{-7}{11}+\frac{2}{-5}\right)+\frac{-13}{22}\right\}$

We will first make the denominator positive.

$\left\{\left(\frac{-7}{11}+\frac{2 \times(-1)}{-5 \times(-1)}\right)+\frac{-13}{22}\right\}=\left\{\left(\frac{-7}{11}+\frac{-2}{5}\right)+\frac{-13}{22}\right\}$

$\left\{\left(\frac{-7}{11}+\frac{-2}{5}\right)+\frac{-13}{22}\right\}=\left\{\left(\frac{-35}{55}+\frac{-22}{55}\right)+\frac{-13}{22}\right\}=\left\{\left(\frac{-35-22}{55}\right)+\frac{-13}{22}\right\}=\left(\frac{-57}{55}+\frac{-13}{22}\right)=\frac{-114}{110}+\frac{-65}{110}=\frac{-114-65}{110}=\frac{-179}{110}$

$\mathrm{RHS}=\left\{\frac{-7}{11}+\left(\frac{2}{-5}+\frac{-13}{22}\right)\right\}$

We will first make the denominator positive.

$\left\{\frac{-7}{11}+\left(\frac{2 \times(-1)}{-5 \times(-1)}+\frac{-13}{22}\right)\right\}=\left\{\frac{-7}{11}+\left(\frac{-2}{5}+\frac{-13}{22}\right)\right\}$

$\left\{\frac{-7}{11}+\left(\frac{-2}{5}+\frac{-13}{22}\right)\right\}=\left\{\frac{-7}{11}+\left(\frac{-44}{110}+\frac{-65}{110}\right)\right\}=\left\{\frac{-7}{11}+\left(\frac{-44+(-65)}{110}\right)\right\}=\frac{-7}{11}+\frac{-109}{110}=\frac{-70}{110}+\frac{-109}{110}=\frac{-70-109}{110}=\frac{-179}{110}$

$\therefore\left(\frac{-7}{11}+\frac{2}{-5}\right)+\frac{-13}{22}=\frac{-7}{11}+\left(\frac{2}{-5}+\frac{-13}{22}\right)$

3.$\mathrm{LHS}=-1+\left(\frac{-2}{3}+\frac{-3}{4}\right)$

$\left\{\frac{-1}{1}+\left(\frac{-2}{3}+\frac{-3}{4}\right)\right\}=\left\{\frac{-1}{1}+\left(\frac{-8}{12}+\frac{-9}{12}\right)\right\}=\left\{\frac{-1}{1}+\left(\frac{-8-9}{12}\right)\right\}=\left\{\frac{-1}{1}+\left(\frac{-17}{12}\right)\right\}=\left(\frac{-1}{1}+\frac{-17}{12}\right)$

$=\left(\frac{-1 \times 12}{1 \times 12}+\frac{-17 \times 1}{12 \times 1}\right)=\left(\frac{-12+(-17)}{12}\right)=\left(\frac{-12-17}{12}\right)=\frac{-29}{12}$

$\mathrm{RHS}=\left\{\left(-1+\frac{-2}{3}\right)+\frac{-3}{4}\right\}$

$\left\{\left(\frac{-1}{1}+\frac{-2}{3}\right)+\frac{-3}{4}\right\}=\left\{\left(\frac{-3}{3}+\frac{-2}{3}\right)+\frac{-3}{4}\right\}=\left\{\left(\frac{-3-2}{3}\right)+\frac{-3}{4}\right\}=\left\{\left(\frac{-5}{3}\right)+\frac{-3}{4}\right\}=\left(\frac{-5}{3}+\frac{-3}{4}\right)=\left(\frac{-20}{12}+\frac{-9}{12}\right)$

$=\left(\frac{-20-9}{12}\right)=\frac{-29}{12}$

$\therefore-1+\left(\frac{-2}{3}+\frac{-3}{4}\right)=\left(-1+\frac{-2}{3}\right)+\frac{-3}{4}$

Leave a comment