Question:
Verify the division algorithm for the polynomials $p(x)=2 x^{4}-6 x^{3}+2 x^{2}-x+2$ and $g(x)=x+2$.
Solution:
$p(x)=2 x^{4}-6 x^{3}+2 x^{2}-x+2$ and $g(x)=x+2$
Quotient $=2 x^{3}-10 x^{2}+22 x-45$
Remainder = 92
Verification:
Divisor $\times$ Quotient + Remainder
$=(x+2) \times\left(2 x^{3}-10 x^{2}+22 x-45\right)+92$
$=x\left(2 x^{3}-10 x^{2}+22 x-45\right)+2\left(2 x^{3}-10 x^{2}+22 x-45\right)+92$
$=2 x^{4}-10 x^{3}+22 x^{2}-45 x+4 x^{3}-20 x^{2}+44 x-90+92$
$=2 x^{4}-6 x^{3}+2 x^{2}-x+2$
= Dividend
Hence verified.