Verify that $x^{3}+y^{3}+z^{3}-3 x y z=\frac{1}{2}(x+y+z)\left[(x-y)^{2}+(y-z)^{2}+(z-x)^{2}\right]$

Solution:

It is known that,

$x^{3}+y^{3}+z^{3}-3 x y z=(x+y+z)\left(x^{2}+y^{2}+z^{2}-x y-y z-z x\right)$

$=\frac{1}{2}(x+y+z)\left[2 x^{2}+2 y^{2}+2 z^{2}-2 x y-2 y z-2 z x\right]$

$=\frac{1}{2}(x+y+z)\left[\left(x^{2}+y^{2}-2 x y\right)+\left(y^{2}+z^{2}-2 y z\right)+\left(x^{2}+z^{2}-2 z x\right)\right]$

$=\frac{1}{2}(x+y+z)\left[(x-y)^{2}+(y-z)^{2}+(z-x)^{2}\right]$

Leave a comment