Verify that the numbers given along side of the cubic polynomials below are their zeros. Also, verify the relationship between the zeros and coefficients in each case:
(i) $f(x)=2 x^{3}+x^{2}-5 x+2 ; \frac{1}{2}, 1,-2$
(ii) $g(x)=x^{3}-4 x^{2}+5 x-2 ; 2,1,1$
We have,
$f(x)=2 x^{3}+2 x^{2}-5 x+2$
$f\left(\frac{1}{2}\right)=2\left(\frac{1}{2}\right)^{3}+\left(\frac{1}{2}\right)^{2}-5\left(\frac{1}{2}\right)+2$
$f\left(\frac{1}{2}\right)=\frac{1}{4}+\frac{1}{4}-\frac{5}{2}+2$
$f\left(\frac{1}{2}\right)=0$
$f(1)=2(1)^{3}+(1)^{2}-5(1)+2$
$f(1)=2+1-5+2$
$f(1)=0$
$f(-2)=2(-2)^{3}+(-2)^{2}-5(-2)+2$
$f(-2)=-16+4+10+2$
$f(-2)=0$
So, $\frac{1}{2}, 1$ and 2 are the zeros of polynomial $p(x)$
Let $\alpha=\frac{1}{2}, \beta=1$ and $\gamma=-2$. Then
$\alpha+\beta+\gamma=\frac{1}{2}+1-2$
$=\frac{1}{2}+\frac{1 \times 2}{1 \times 2}-\frac{2 \times 2}{1 \times 2}$
$=\frac{1+2-4}{2}$
$=\frac{-1}{2}$
From $f(x)=2 x^{3}+2 x^{2}-5 x+2$
$\alpha+\beta+\gamma=\frac{-\text { Coefficient of } x^{2}}{\text { Coefficient of } x^{3}}$
$\alpha+\beta+\gamma=-\left(\frac{1}{2}\right)$
$\alpha \beta+\beta \gamma+\gamma \alpha=\frac{1}{2}(1)+1(-2)-2\left(\frac{1}{2}\right)$
$=\frac{1}{2}-2-\frac{2}{2}$
Taking least common factor we get,
$\alpha \beta+\beta \gamma+\gamma \alpha=\frac{1}{2}-\frac{2 \times 2}{1 \times 2}-\frac{2}{2}$
$\alpha \beta+\beta \gamma+\gamma \alpha=\frac{1-4-2}{2}$
$\alpha \beta+\beta \gamma+\gamma \alpha=\frac{1-6}{2}$
$\alpha \beta+\beta \gamma+\gamma \alpha=\frac{-5}{2}$
From $f(x)=2 x^{3}+2 x^{2}-5 x+2$
$\alpha \beta+\beta \gamma+\gamma \alpha=\frac{\text { Coefficient of } x}{\text { Coefficient of } x^{3}}$
$\alpha \beta+\beta \gamma+\gamma \alpha=\frac{-5}{2}$
$\alpha \beta \gamma=\frac{1}{2} \times 1 \times(-2)$
$\alpha \beta \gamma=-1$
From $f(x)=2 x^{3}+2 x^{2}-5 x+2$
$\alpha \beta \gamma=\frac{-\text { Constant term }}{\text { Coefficient of } x^{2}}$
$\alpha \beta \gamma=-1$
Hence, it is verified that the numbers given along side of the cubic polynomials are their zeros and also verified the relationship between the zeros and coefficients
(ii) We have,
$g(x)=x^{3}-4 x^{2}+5 x-2$
$g(2)=(2)^{3}-4(2)^{2}+5(2)-2$
$g(2)=8-16+10-2$
$g(2)=0$
$g(1)=(1)^{3}-4(1)^{2}+5(1)-2$
$=1-4+5-2$
$=0$
$g(1)=(1)^{3}-4(1)^{2}+5(1)-2$
$=1-4+5-2$
$=0$
So 2,1 and 1 are the zeros of the polynomial $g(x)$
Let $\alpha=2, \beta=1$ and $\lambda=1$. Then,
$\alpha+\beta+\gamma=2+1+1$
$\alpha+\beta+\gamma=4$
From $g(x)=x^{3}-4 x^{2}+5 x-2$
$\alpha+\beta+\gamma=\frac{\text { Coefficient of } x^{2}}{\text { Coefficient of } x^{3}}$
$\alpha+\beta+\gamma=\frac{4}{1}$
$\alpha+\beta+\gamma=4$
$\alpha \beta+\beta \gamma+\gamma \alpha=2(1)+1(1)+1(2)$
$\alpha \beta+\beta \gamma+\gamma \alpha=2+1+2$
$\alpha \beta+\beta \gamma+\gamma \alpha=5$
From $g(x)=x^{3}-4 x^{2}+5 x-2$
$\alpha \beta+\beta \gamma+\gamma \alpha=\frac{\text { Coefficient of } x}{\text { Coefficient of } x^{3}}$
$\alpha \beta+\beta \gamma+\gamma \alpha=\frac{5}{1}$
$\alpha \beta+\beta \gamma+\gamma \alpha=5$
$\alpha \beta \gamma=2 \times 1 \times 1$
$\alpha \beta \gamma=2$
From $g(x)=x^{3}-4 x^{2}+5 x-2$
$\alpha \beta \gamma=\frac{-\text { Constant term }}{\text { Coefficient of } x^{2}}$
$\alpha \beta \gamma=-\left(\frac{-2}{1}\right)$
$\alpha \beta \gamma=2$
Hence, it is verified that the numbers given along side of the cubic polynomials are their
zeros and also verified the relationship between the zeros and coefficients.