Verify Lagrange's mean value theorem for the following functions on the indicated intervals. In each case find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem
(i) $f(x)=x^{2}-1$ on $[2,3]$
(ii) $f(x)=x^{3}-2 x^{2}-x+3$ on $[0,1]$
(iii) $f(x)=x(x-1)$ on $[1,2]$
(iv) $f(x)=x^{2}-3 x+2$ on $[-1,2]$
(v) $f(x)=2 x^{2}-3 x+1$ on $[1,3]$
(vi) $f(x)=x^{2}-2 x+4$ on $[1,5]$
(vii) $f(x)=2 x-x^{2}$ on $[0,1]$
(viii) $f(x)=(x-1)(x-2)(x-3)$ on $[0,4]$
(ix) $f(x)=\sqrt{25-x^{2}}$ on $[-3,4]$
(x) $f(x)=\tan ^{-1} x$ on $[0,1]$
(xi) $f(x)=x+\frac{1}{x}$ on $[1,3]$
(xii) $f(x)=x(x+4)^{2}$ on $[0,4]$
(xiii) $f(x)=\sqrt{x^{2}-4}$ on $[2,4]$
(xiv) $f(x)=x^{2}+x-1$ on $[0,4]$
(xv) $f(x)=\sin x-\sin 2 x-x$ on $[0, \pi]$
(xvi) $f(x)=x^{3}-5 x^{2}-3 x$ on $[1,3]$
(i) We have
$f(x)=x^{2}-1$
Since a polynomial function is everywhere continuous and differentiable, $f(x)$ is continuous on $[2,3]$ and differentiable on $(2,3)$. Thus, both conditions of Lagrange's mean value theorem are satisfied. So, there must exist at least one real number $c \in(2,3)$ such that
$f^{\prime}(c)=\frac{f(3)-f(2)}{3-2}$
Now. $f(x)=x^{2}-1$
$\Rightarrow f^{\prime}(x)=2 x, f(3)=(3)^{2}-1=8, f(2)=(2)^{2}-1=3$
$\therefore f^{\prime}(x)=\frac{f(3)-f(2)}{3-2}$
$\Rightarrow 2 x=\frac{8-3}{1}$
$\Rightarrow x=\frac{5}{2}$
Thus, $c=\frac{5}{2} \in(2,3)$ such that $f^{\prime}(c)=\frac{f(3)-f(2)}{3-2}$.
Hence, Lagrange's theorem is verified.
(ii) We have,
$f(x)=x^{3}-2 x^{2}-x+3=0$
Since a polynomial function is everywhere continuous and differentiable
Therefore, $f(x)$ is continuous on $[0,1]$ and differentiable on $(0,1)$.
Thus, both conditions of Lagrange's mean value theorem are satisfied. So, there must exist at least one real number $c \in(0,1)$ such that
$f^{\prime}(c)=\frac{f(1)-f(0)}{1-0}$
Now, $f(x)=x^{3}-2 x^{2}-x+3=0$
$\Rightarrow f^{\prime}(x)=3 x^{2}-4 x-1, f(1)=1, f(0)=3$
$\therefore f^{\prime}(x)=\frac{f(1)-f(0)}{1-0}$
$\Rightarrow 3 x^{2}-4 x-1=\frac{1-3}{1}$
$\Rightarrow 3 x^{2}-4 x-1+2=0$
$\Rightarrow 3 x^{2}-4 x+1=0$
$\Rightarrow 3 x^{2}-3 x-x+1=0$
$\Rightarrow(3 x-1)(x-1)=0$
$\Rightarrow x=\frac{1}{3}, 1$
Thus, $c=\frac{1}{3} \in(0,1)$ such that $f^{\prime}(c)=\frac{f(1)-f(0)}{1-0}$.
Hence, Lagrange's theorem is verified.
(iii) We have,
$f(x)=x(x-1)$ which can be rewritten as $f(x)=x^{2}-x$
Since a polynomial function is everywhere continuous and differentiable.
Therefore, $f(x)$ is continuous on $[1,2]$ and differentiable on $(1,2)$.
Thus, both conditions of Lagrange's mean value theorem are satisfied. So, there must exist at least one real number $c \in(1,2)$ such that
$f^{\prime}(c)=\frac{f(2)-f(1)}{2-1}$
Now, $f(x)=x^{2}-x$
$\Rightarrow f^{\prime}(x)=2 x-1, f(2)=2, f(1)=0$
$\therefore f^{\prime}(x)=\frac{f(2)-f(1)}{2-1}$
$\Rightarrow 2 x-1=\frac{2-0}{2-1}$
$\Rightarrow 2 x-1-2=0$
$\Rightarrow 2 x=3$
$\Rightarrow x=\frac{3}{2}$
Thus, $c=\frac{3}{2} \in(1,2)$ such that $f^{\prime}(c)=\frac{f(2)-f(1)}{2-1}$.
Hence, Lagrange's theorem is verified.
(iv) We have,
$f(x)=x^{2}-3 x+2$
Since a polynomial function is everywhere continuous and differentiable.
Therefore, $f(x)$ is continuous on $[-1,2]$ and differentiable on $(-1,2)$. Thus, both conditions of Lagrange's mean value theorem are satisfied. So, there must exist at least one real number $c \in(-1,2)$ such that
$f^{\prime}(c)=\frac{f(2)-f(-1)}{2+1}=\frac{f(2)-f(-1)}{3}$
Now, $f(x)=x^{2}-3 x+2$
$\Rightarrow f^{\prime}(x)=2 x-3, f(2)=0, f(-1)=(-1)^{2}-3(-1)+2=6$
$\therefore f^{\prime}(x)=\frac{f(2)-f(-1)}{3}$
$\Rightarrow 2 x-3=-2$
$\Rightarrow 2 x-1=0$
$\Rightarrow x=\frac{1}{2}$
Thus, $c=\frac{1}{2} \in(-1,2)$ such that $f^{\prime}(c)=\frac{f(2)-f(-1)}{2-(-1)}$.
Hence, Lagrange's theorem is verified.
(v) We have,
$f(x)=2 x^{2}-3 x+1$
Since a polynomial function is everywhere continuous and differentiable.
Therefore, $f(x)$ is continuous on $[1,3]$ and differentiable on $(1,3)$. Thus, both conditions of Lagrange's mean value theorem are satisfied. So, there must exist at least one real number $c \in(1,3)$ such that
$f^{\prime}(c)=\frac{f(3)-f(1)}{3-1}=\frac{f(3)-f(1)}{2}$
Now, $f(x)=2 x^{2}-3 x+1$
$\Rightarrow f^{\prime}(x)=4 x-3, f(3)=10, f(1)=2(1)^{2}-3(1)+1=0$
$\therefore f^{\prime}(x)=\frac{f(3)-f(1)}{2}$
$\Rightarrow 4 x-3=\frac{10-0}{2}$
$\Rightarrow 4 x-3-5=0$
$\Rightarrow x=2$
Thus, $c=2 \in(1,3)$ such that $f^{\prime}(c)=\frac{f(3)-f(1)}{3-1}$.
Hence, Lagrange's theorem is verified.
(vi) We have,
$f(x)=x^{2}-2 x+4$
Since a polynomial function is everywhere continuous and differentiable.
Therefore, $f(x)$ is continuous on $[1,5]$ and differentiable on $(1,5)$. Thus, both conditions of Lagrange's mean value theorem are satisfied. So, there must exist at least one real number $c \in(1,5)$ such that
$f^{\prime}(c)=\frac{f(5)-f(1)}{5-1}=\frac{f(5)-f(1)}{4}$
Now, $f(x)=x^{2}-2 x+4$
$\Rightarrow f^{\prime}(x)=2 x-2, f(5)=25-10+4=19, f(1)=1-2+4=3$
$\therefore f^{\prime}(x)=\frac{f(5)-f(1)}{4}$
$\Rightarrow 2 x-2=\frac{19-3}{4}$
$\Rightarrow 2 x-2-4=0$
$\Rightarrow x=\frac{6}{2}=3$
Thus, $c=3 \in(1,5)$ such that $f^{\prime}(c)=\frac{f(5)-f(1)}{5-1}$.
Hence, Lagrange's theorem is verified.
(vii) We have,
$f(x)=2 x-x^{2}$
Since a polynomial function is everywhere continuous and differentiable.
Therefore, $f(x)$ is continuous on $[0,1]$ and differentiable on $(0,1)$. Thus, both conditions of Lagrange's mean value theorem are satisfied. So, there must exist at least one real number $c \in(0,1)$ such that
$f^{\prime}(c)=\frac{f(1)-f(0)}{1-0}=\frac{f(1)-f(0)}{1}$
Now, $f(x)=2 x-x^{2}$
$\Rightarrow f^{\prime}(x)=2-2 x, f(1)=2-1=1, f(0)=0$
$\therefore f^{\prime}(x)=\frac{f(1)-f(0)}{1}$
$\Rightarrow 2-2 x=\frac{1-0}{1}$
$\Rightarrow-2 x=1-2$
$\Rightarrow x=\frac{1}{2}$
Thus, $c=\frac{1}{2} \in(0,1)$ such that $f^{\prime}(c)=\frac{f(1)-f(0)}{1-0}$.
Hence, Lagrange's theorem is verified.
(viii) We have,
$f(x)=(x-1)(x-2)(x-3)$ which can be rewritten as $f(x)=x^{3}-6 x^{2}+11 x-6$
Since a polynomial function is everywhere continuous and differentiable.
Therefore, $f(x)$ is continuous on $[0,4]$ and differentiable on $(0,4)$. Thus, both conditions of Lagrange's mean value theorem are satisfied. So, there must exist at least one real number $c \in(0,4)$ such that
$f^{\prime}(c)=\frac{f(4)-f(0)}{4-0}=\frac{f(4)-f(0)}{4}$
Now, $f(x)=x^{3}-6 x^{2}+11 x-6$
$\Rightarrow f^{\prime}(x)=3 x^{2}-12 x+11, f(0)=-6, f(4)=64-96+44-6=6$
$\therefore f^{\prime}(x)=\frac{f(4)-f(0)}{4-0}$
$\Rightarrow 3 x^{2}-12 x+11=\frac{6+6}{4}$
$\Rightarrow 3 x^{2}-12 x+8=0$
$\Rightarrow x=2-\frac{2}{\sqrt{3}}, 2+\frac{2}{\sqrt{3}}$
Thus, $c=2 \pm \frac{2}{\sqrt{3}} \in(0,4)$ such that $f^{\prime}(c)=\frac{f(4)-f(0)}{4-0}$.
Hence, Lagrange's theorem is verified.
(ix) We have,
$f(x)=\sqrt{25-x^{2}}$
Here, $f(x)$ will exist,
if
$25-x^{2} \geq 0$
$\Rightarrow x^{2} \leq 25$
$\Rightarrow-5 \leq x \leq 5$
Since for each $x \in[-3,4]$, the function $f(x)$ attains a unique definite value.
So, $f(x)$ is continuous on $[-3,4]$
Also, $f^{\prime}(x)=\frac{1}{2 \sqrt{25-x^{2}}}(-2 x)=\frac{-x}{\sqrt{25-x^{2}}}$ exists for all $x \in(-3,4)$
So, $f(x)$ is differentiable on $(-3,4)$.
Thus, both the conditions of lagrange's theorem are satisfied.
Consequently, there exists some $c \in(-3,4)$ such that
$f^{\prime}(c)=\frac{f(4)-f(-3)}{4+3}=\frac{f(4)-f(-3)}{7}$
Now, $f(x)=\sqrt{25-x^{2}}$
$f^{\prime}(x)=\frac{-x}{\sqrt{25-x^{2}}}, f(-3)=4, f(4)=3$
$\therefore f^{\prime}(x)=\frac{f(4)-f(-3)}{4+3}$
$\Rightarrow \frac{-x}{\sqrt{25-x^{2}}}=\frac{3-4}{7}$
$\Rightarrow 49 x^{2}=25-x^{2}$
$\Rightarrow x=\pm \frac{1}{\sqrt{2}}$
Thus, $c=\pm \frac{1}{\sqrt{2}} \in(-3,4)$ such that $f^{\prime}(c)=\frac{f(4)-f(-3)}{4-(-3)}$.
Hence, Lagrange's theorem is verified.
(x) We have,
$f(x)=\tan ^{-1} x$
Clearly, $f(x)$ is continuous on $[0,1]$ and derivable on $(0,1)$
Thus, both the conditions of lagrange's theorem are satisfied.
Consequently, there exists some $c \in(-3,4)$ such that
$f^{\prime}(c)=\frac{f(1)-f(0)}{1-0}=\frac{f(1)-f(0)}{1}$
$f^{\prime}(c)=\frac{f(1)-f(0)}{1-0}=\frac{f(1)-f(0)}{1}$
$\therefore f^{\prime}(x)=\frac{f(1)-f(0)}{1-0}$
$\Rightarrow \frac{1}{1+x^{2}}=\frac{\pi}{4}-0$
$\Rightarrow\left(\frac{4}{\pi}-1\right)=x^{2}$
$\Rightarrow x=\pm \sqrt{\frac{4-\pi}{\pi}}$
Thus, $c=\sqrt{\frac{4-\pi}{\pi}} \in(0,1)$ such that $f^{\prime}(c)=\frac{f(1)-f(0)}{1-0}$.
Hence, Lagrange's theorem is verified.
(xi) We have,
Clearly, $f(x)$ is continuous on $[1,3]$ and derivable on $(1,3)$
Thus, both the conditions of lagrange's theorem are satisfied.
Consequently, there exists some $c \in(1,3)$ such that
$f^{\prime}(c)=\frac{f(3)-f(1)}{3-1}=\frac{f(3)-f(1)}{2}$
Now, $f(x)=\frac{x^{2}+1}{x}$
$f^{\prime}(x)=\frac{x^{2}-1}{x^{2}}, f(1)=2, f(3)=\frac{10}{3}$
$\therefore f^{\prime}(x)=\frac{f(3)-f(1)}{2}$
$\Rightarrow \frac{x^{2}-1}{x^{2}}=\frac{4}{6}$
$\Rightarrow \frac{x^{2}-1}{x^{2}}=\frac{2}{3}$
$\Rightarrow 3 x^{2}-3=2 x^{2}$
$\Rightarrow x=\pm \sqrt{3}$
Thus, $c=\sqrt{3} \in(1,3)$ such that $f^{\prime}(c)=\frac{f(3)-f(1)}{3-1}$.
Hence, Lagrange's theorem is verified.
(xii) We have,
$f(x)=x(x+4)^{2}=x\left(x^{2}+16+8 x\right)=x^{3}+8 x^{2}+16 x$
Since $f(x)$ is a polynomial function which is everywhere continuous and differentiable.
Therefore, $f(x)$ is continuous on $[0,4]$ and derivable on $(0,4)$
Thus, both the conditions of lagrange's theorem are satisfied.
Consequently, there exists some $c \in(0,4)$ such that
$f^{\prime}(c)=\frac{f(4)-f(0)}{4-0}=\frac{f(4)-f(0)}{4}$
Now, $f(x)=x^{3}+8 x^{2}+16 x$
$f^{\prime}(x)=3 x^{2}+16 x+16, f(4)=64+128+64=256, f(0)=0$
$\therefore f^{\prime}(x)=\frac{f(4)-f(0)}{4-0}$
$\Rightarrow 3 x^{2}+16 x+16=\frac{256}{4}$
$\Rightarrow 3 x^{2}+16 x-48=0$
$\Rightarrow x=-\frac{4}{3}(2+\sqrt{13}), \frac{4}{3}(\sqrt{13}-2)$
Thus, $c=\frac{-8+4 \sqrt{13}}{3} \in(0,4)$ such that $f^{\prime}(c)=\frac{f(4)-f(0)}{4-0}$.
Hence, Lagrange's theorem is verified.
(xiii) We have,
$f(x)=\sqrt{x^{2}-4}$
Here, $f(x)$ will exist,
if
$x^{2}-4 \geq 0$
$\Rightarrow x \leq-2$ or $x \geq 2$
Since for each $x \in[2,4]$, the function $f(x)$ attains a unique definite value.
So, $f(x)$ is continuous on $[2,4]$
Also, $f^{\prime}(x)=\frac{1}{2 \sqrt{x^{2}-4}}(2 x)=\frac{x}{\sqrt{x^{2}-4}}$ exists for all $x \in(2,4)$
So, $f(x)$ is differentiable on $(2,4)$.
Thus, both the conditions of lagrange's theorem are satisfied.
Consequently, there exists some $c \in(2,4)$ such that
$f^{\prime}(c)=\frac{f(4)-f(2)}{4-2}=\frac{f(4)-f(2)}{2}$
$\therefore f^{\prime}(x)=\frac{f(4)-f(2)}{4-2}$
$\Rightarrow \frac{x}{\sqrt{x^{2}-4}}=\frac{2 \sqrt{3}}{2}$
$\Rightarrow \frac{x}{\sqrt{x^{2}-4}}=\sqrt{3}$
$\Rightarrow \frac{x^{2}}{x^{2}-4}=3$
$\Rightarrow x^{2}=3 x^{2}-12$
$\Rightarrow x^{2}=6$
$\Rightarrow x=\pm \sqrt{6}$
Thus, $c=\sqrt{6} \in(2,4)$ such that $f^{\prime}(c)=\frac{f(4)-f(2)}{4-2}$.
Hence, Lagrange's theorem is verified.
(xiv) We have,
$f(x)=x^{2}+x-1$
Since polynomial function is everywhere continuous and differentiable.
Therefore, $f(x)$ is continuous on $[0,4]$ and differentiable on $(0,4)$
Thus, both the conditions of lagrange's theorem are satisfied.
Consequently, there exists some $c \in(0,4)$ such that
$f^{\prime}(c)=\frac{f(4)-f(0)}{4-0}=\frac{f(4)-f(0)}{4}$
$\therefore f^{\prime}(x)=\frac{f(4)-f(0)}{4-0}$
$\Rightarrow 2 x+1=\frac{20}{4}$
$\Rightarrow 2 x+1=5$
$\Rightarrow 2 x=4$
$\Rightarrow x=2$
Thus, $c=2 \in(0,4)$ such that $f^{\prime}(c)=\frac{f(4)-f(0)}{4-0}$.
Hence, Lagrange's theorem is verified
(xv) We have,
$f(x)=\sin x-\sin 2 x-x$
Since $\sin x, \sin 2 x \& x$ are everywhere continuous and differentiable
Therefore, $f(x)$ is continuous on $[0, \pi]$ and differentiable on $(0, \pi)$
Thus, both the conditions of lagrange's theorem are satisfied.
Consequently, there exists some $c \in(0, \pi)$ such that
$f^{\prime}(c)=\frac{f(\pi)-f(0)}{\pi-0}=\frac{f(\pi)-f(0)}{\pi}$
$\therefore f^{\prime}(x)=\frac{f(\pi)-f(0)}{\pi-0}$
$\Rightarrow \cos x-2 \cos 2 x-1=-1$
$\Rightarrow \cos x-2 \cos 2 x=0$
$\Rightarrow \cos x-4 \cos ^{2} x=-2$
$\Rightarrow 4 \cos ^{2} x-\cos x-2=0$
$\Rightarrow \cos x=\frac{1}{8}(1 \pm \sqrt{33})$
$\Rightarrow x=\cos ^{-1}\left[\frac{1}{8}(1 \pm \sqrt{33})\right]$
Thus, $c=\cos ^{-1}\left(\frac{1 \pm \sqrt{33}}{8}\right) \in(0, \pi)$ such that $f^{\prime}(c)=\frac{f(\pi)-f(0)}{\pi-0}$.
Hence, Lagrange's theorem is verified.'
(xvi) We have,
$f(x)=x^{3}-5 x^{2}-3 x$
Since polynomial function is everywhere continuous and differentiable
Therefore, $f(x)$ is continuous on $[1,3]$ and differentiable on $(1,3)$
Thus, both the conditions of lagrange's theorem are satisfied.
Consequently, there exists some $c \in(1,3)$ such that
$f^{\prime}(c)=\frac{f(3)-f(1)}{3-1}=\frac{f(3)-f(1)}{2}$
Now, $f(x)=x^{3}-5 x^{2}-3 x$
$f^{\prime}(x)=3 x^{2}-10 x-3, f(3)=-27, f(1)=-7$
$\therefore f^{\prime}(x)=\frac{f(3)-f(1)}{2}$
$\Rightarrow 3 x^{2}-10 x-3=\frac{-20}{2}$
$\Rightarrow 3 x^{2}-10 x+7=0$
$\Rightarrow x=1, \frac{7}{3}$
Thus, $c=\frac{7}{3} \in(1,3)$ such that $f^{\prime}(c)=\frac{f(3)-f(1)}{3-1}$.
Hence, Lagrange's theorem is verified.