Verify Euler's formula for each of the following polyhedrons:
(i) In the given polyhedron:
Edges $\mathrm{E}=15$
Faces $\mathrm{F}=7$
Vertices $\mathrm{V}=10$
Now, putting these values in Euler's formula:
LHS : F+V
$=7+10$
$=17$
LHS : E+2
$=15+2$
$=17$
LHS = RHS
Hence, the Euler's formula is satisfied.
(ii) In the given polyhedron:
Edges $\mathrm{E}=16$
Faces $\mathrm{F}=9$
Vertices $\mathrm{V}=9$
Now, putting these values in Euler's formula:
RHS : F+V
$=9+9$
$=18$
LHS : E+2
$=16+2$
$=18$
LHS $=$ RHS
Hence, Euler's formula is satisfied.
(iii) In the following polyhedron:
Edges $\mathrm{E}=21$
Faces $\mathrm{F}=9$
Vertices $\mathrm{V}=14$
Now, putting these values in Euler's formula:
$L H S: \mathrm{F}+\mathrm{V}$
$=9+14$
$=23$
$R H S: \mathrm{E}+2$
$=21+2$
$=23$
This is true.
Hence, Euler's formula is satisfied.
(iv) In the following polyhedron:
Edges $\mathrm{E}=8$
Faces $\mathrm{F}=5$
Vertices $\mathrm{V}=5$
Now, putting these values in Euler's formula:
LHS : $\mathrm{F}+\mathrm{V}$
$=5+5$
$=10$
RHS : $\mathrm{E}+2$
$=8+2$
$=10$
LHS $=$ RHS
Hence, Euler's formula is satisfied.
(v) In the following polyhedron:
Edges $\mathrm{E}=16$
Faces $\mathrm{F}=9$
Vertices $\mathrm{V}=9$
Now, putting these values in Euler's formula:
LHS : F+V
$=9+9$
$=18$
RHS : E+2
$=16+2$
$=18$
LHS $=$ RHS
Hence, Euler's formula is satisfied.