Using the principle of mathematical induction, prove each of the following for all n ϵ N:
$\left(1+\frac{3}{1}\right)\left(1+\frac{5}{4}\right)\left(1+\frac{7}{9}\right) \ldots\left\{1+\frac{(2 n+1)}{n^{2}}\right\}=(n+1)^{2}$
To Prove:
$\left(1+\frac{3}{1}\right) \times\left(1+\frac{5}{4}\right) \times\left(1+\frac{7}{9}\right) \times \ldots \ldots \times\left\{1+\frac{2 n+1}{n^{2}}\right\}=(n+1)^{2}$
Let us prove this question by principle of mathematical induction (PMI)
Let $\mathrm{P}(\mathrm{n}):\left(1+\frac{3}{1}\right) \times\left(1+\frac{5}{4}\right) \times\left(1+\frac{7}{9}\right) \times \ldots \ldots \times\left\{1+\frac{2 n+1}{n^{2}}\right\}=(n+1)^{2}$
For n = 1
LHS $=1+\frac{3}{1}=4$
$\mathrm{RHS}=(1+1)^{2}=4$
Hence, LHS = RHS
$P(n)$ is true for $n=1$
Assume $P(k)$ is true
$=\left(1+\frac{3}{1}\right) \times\left(1+\frac{5}{4}\right) \times\left(1+\frac{7}{9}\right) \times \ldots \ldots \times\left\{1+\frac{2 k+1}{k^{2}}\right\}=(k+1)^{2} .$ …(1)
We will prove that P(k + 1) is true
$\mathrm{RHS}=((k+1)+1)^{2}=(k+2)^{2}$
$\mathrm{LHS}=\left(1+\frac{3}{1}\right) \times\left(1+\frac{5}{4}\right) \times\left(1+\frac{7}{9}\right) \times \ldots \ldots \times\left\{1+\frac{2(k+1)+1}{(k+1)^{2}}\right\}$
[Now writing the second last term]
$=\left(1+\frac{3}{1}\right) \times\left(1+\frac{5}{4}\right) \times\left(1+\frac{7}{9}\right) \times \ldots \ldots \times\left\{1+\frac{2 k+1}{k^{2}}\right\} \times\left\{1+\frac{2(k+1)+1}{(k+1)^{2}}\right\}$
$=(k+1)^{2} \times\left\{1+\frac{2(k+1)+1}{(k+1)^{2}}\right\}$ [Using 1]
$=(k+1)^{2} \times\left\{1+\frac{(2 k+3)}{(k+1)^{2}}\right\}$
$=(k+1)^{2} \times\left\{\frac{(k+1)^{2}+(2 k+3)}{(k+1)^{2}}\right\}$
$=(k+1)^{2}+(2 k+3)$
$=k^{2}+2 k+1+2 k+3$
$=(k+2)^{2}$
= RHS
LHS = RHS
Therefore, $P(k+1)$ is true whenever $P(k)$ is true
By the principle of mathematical induction, $\mathrm{P}(\mathrm{n})$ is true for
Where $\mathrm{n}$ is a natural number
Hence proved.