Using the principle of mathematical induction, prove each of the following for all n ϵ N:
$\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots . .+\frac{1}{2^{\mathrm{n}}}=\left(1-\frac{1}{2^{\mathrm{n}}}\right)$
To Prove:
$\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots .+\frac{1}{2^{n}}=\left(1-\frac{1}{2^{n}}\right)$
Steps to prove by mathematical induction:
Let $P(n)$ be a statement involving the natural number $n$ such that
(i) $P(1)$ is true
(ii) $P(k+1)$ is true, whenever $P(k)$ is true
Then $P(n)$ is true for all $n \in N$
Therefore,
Let $\mathrm{P}(\mathrm{n}): \frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots .+\frac{1}{2^{\mathrm{n}}}=\left(1-\frac{1}{2^{\mathrm{n}}}\right)$
Step 1:
$P(1)=1-\frac{1}{2^{1}}=1-\frac{1}{2}=\frac{1}{2}$
Therefore, P(1) is true
Step 2:
Let P(k) is true Then,
$\mathrm{P}(\mathrm{k}): \frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots+\frac{1}{2^{k}}=1-\frac{1}{2^{k}}$
Now,
$\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots+\frac{1}{2^{k+1}}=1-\frac{1}{2^{k}}+\frac{1}{2^{k+1}}$
$=1-\frac{1}{2^{k}}+\frac{1}{2^{k+1}}$
$=1+\frac{1}{2^{k}}\left(\frac{1}{2}-1\right)$
$=1+\frac{1}{2^{k}}\left(-\frac{1}{2}\right)$
$=1-\frac{1}{2^{k+1}}$
$=\mathrm{P}(\mathrm{k}+1)$
Hence, P(k + 1) is true whenever P(k) is true
Hence, by the principle of mathematical induction, we have
$\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots .+\frac{1}{2^{n}}=\left(1-\frac{1}{2^{n}}\right)$ for all n ϵ N