Using the principle of mathematical induction, prove each of the following for all $\mathrm{n} \in \mathrm{N}$ :
$2+6+18+\ldots+2 \times 3^{n-1}=\left(3^{n}-1\right)$
To Prove:
$2+6+18+\ldots+2^{\times} 3^{n-1}=\left(3^{n}-1\right)$
Steps to prove by mathematical induction:
Let $P(n)$ be a statement involving the natural number $n$ such that
(i) $P(1)$ is true
(ii) $P(k+1)$ is true, whenever $P(k)$ is true
Then $P(n)$ is true for all $n \in N$
Therefore,
Let $\mathrm{P}(\mathrm{n}): 2+6+18+\ldots+2 \times 3^{n-1}=\left(3^{n}-1\right)$
Step 1
$P(1)=3^{1}-1=3-1=2$
Therefore, P(1) is true
Step 2:
Let P(k) is true Then,
$P(k): 2+6+18+\ldots+2^{\times} 3^{k-1}=\left(3^{k}-1\right)$
Now,
$2+6+18+\ldots+2 \times 3^{k-1}+2 \times 3^{k+1-1}=\left(3^{k}-1\right)+2 \times 3^{k}$
$=-1+3 \times 3^{\mathrm{k}}$
$=3^{\mathrm{k}+1-1}$
$=\mathrm{P}(\mathrm{k}+1)$
Hence, P(k + 1) is true whenever P(k) is true
Hence, by the principle of mathematical induction, we have
$2+6+18+\ldots+2^{\times} 3^{n-1}=\left(3^{n}-1\right)$ for all $n \in N$