Using the principle of mathematical induction, prove each of the following for all n ϵ N:
$1^{2}+3^{2}+5^{2}+7^{2}+\ldots+(2 n-1)^{2}=$ $\frac{\mathrm{n}(2 \mathrm{n}-1)(2 \mathrm{n}+1)}{3}$
To Prove
$1^{2}+3^{2}+5^{2}+7^{2}+\ldots+(2 n-1)^{2}=\frac{n(2 n-1)(2 n+1)}{3}$
Steps to prove by mathematical induction:
Let $P(n)$ be a statement involving the natural number $n$ such that
(i) $P(1)$ is true
(ii) $P(k+1)$ is true, whenever $P(k)$ is true
Then $P(n)$ is true for all $n \in N$
Therefore
Let $P(n): 1^{2}+3^{2}+5^{2}+7^{2}+\ldots+(2 n-1)^{2}=\frac{n(2 n-1)(2 n+1)}{3}$
Step 1:
$P(1)=\frac{1(2-1)(2+1)}{3}=\frac{3}{3}=1$
Therefore, P(1) is true
Step 2:
Let P(k) is true Then
$\mathrm{P}(\mathrm{k}): 1^{2}+3^{2}+5^{2}+7^{2}+\ldots+(2 \mathrm{k}-1)^{2}=\frac{k(2 k-1)(2 k+1)}{3}$
Now,
$1^{2}+3^{2}+5^{2}+7^{2}+\ldots+(2(k+1)-1)^{2}=\frac{k(2 k-1)(2 k+1)}{3}+(2 k+2-1)^{2}$
$=\frac{k(2 k-1)(2 k+1)}{3}+(2 k+1)^{2}$
$=(2 k+1)\left[\frac{k(2 k-1)}{3}+2 k+1\right]$
$=(2 k+1)\left[\frac{2 k^{2}-k+6 k+3}{3}\right]$
$=(2 k+1)\left[\frac{2 k^{2}+5 k+3}{3}\right]$
$={ }^{(2 k+1)\left[\frac{(k+1)(2 k+3)}{3}\right]}$ (Splitting the middle term)
$=\frac{(k+1)(2 k+1)(2 k+3)}{3}$
= P(k + 1)
Hence, P(k + 1) is true whenever P(k) is true
Hence, by the principle of mathematical induction, we have
$1^{2}+3^{2}+5^{2}+7^{2}+\ldots+(2 n-1)^{2}=\frac{n(2 n-1)(2 n+1)}{3}$ for all $n \in N$