Using the principle of mathematical induction, prove each of the following for all n ϵ N:
$1+3+3^{2}+3^{3}+\ldots+3^{n-1}=\frac{1}{2}\left(3^{n}-1\right)$
To Prove:
$1+3^{1}+3^{2}+\ldots+3^{n-1}=\frac{3^{n}-1}{2}$
Steps to prove by mathematical induction:
Let $P(n)$ be a statement involving the natural number $n$ such that
(i) $P(1)$ is true
(ii) $P(k+1)$ is true, whenever $P(k)$ is true
Then $P(n)$ is true for all $n \in N$
Therefore,
Let $\mathrm{P}(\mathrm{n}): 1+3^{1}+3^{2}+\ldots+3^{n-1}=\frac{3^{n}-1}{2}$
Step 1:
$P(1)=\frac{3^{1}-1}{2}=\frac{2}{2}=1$
Therefore, P(1) is true
Step 2:
Let P(k) is true Then,
$\mathrm{P}(\mathrm{k}): 1+3^{1}+3^{2}+\ldots+3^{k-1}=\frac{3^{k}-1}{2}$
Now,
$1+3^{1}+3^{2}+\ldots+3^{k-1}+3^{(k+1)-1}=\frac{3^{(k)}-1}{2}+3^{(k+1)-1}$
$=\frac{3^{k}-1}{2}+3^{(k)}$
$={ }^{(k)}\left(\frac{1}{2}+1\right)-\frac{1}{2}$
$=3^{(k)}\left(\frac{3}{2}\right)-\frac{1}{2}$
$=3^{(k+1)}\left(\frac{1}{2}\right)-\frac{1}{2}$
$=\frac{3^{(k+1)}-1}{2}$
$=\mathrm{P}(\mathrm{k}+1)$
Hence, P(k + 1) is true whenever P(k) is true
Hence, by the principle of mathematical induction, we have
$1+3^{1}+3^{2}+\ldots+3^{n-1}=\frac{3^{n}-1}{2}$ for all $\mathrm{n} \in \mathrm{N}$