Using the principle of mathematical induction, prove each of the following for all n ϵ N:
$3 \cdot 2^{2}+3^{2} \cdot 2^{3}+3^{3} \cdot 2^{4}+\ldots .+3^{n} \cdot 2^{n+1}=\frac{12}{5}\left(6^{n}-1\right)$
To Prove:
$3 \times 2^{2}+3^{2} \times 2^{3}+3^{3} \times 2^{4}+\ldots \ldots \times+3^{n} \times 2^{n+1}=\frac{12}{5}\left(6^{n}-1\right)$
Let us prove this question by principle of mathematical induction (PMI)
Let $\mathrm{P}(\mathrm{n}): 3 \times 2^{2}+3^{2} \times 2^{3}+3^{3} \times 2^{4}+\ldots \ldots \times+3^{n} \times 2^{n+1}$
For n = 1
$\mathrm{LHS}=3 \times 2^{2}=12$
$\mathrm{RHS}=\left(\frac{12}{5}\right) \times\left(6^{1}-1\right)$
$=\frac{12}{5} \times 5=12$
Hence, LHS = RHS
P(n) is true for n = 1
Assume P(k) is true
$3 \times 2^{2}+3^{2} \times 2^{3}+3^{3} \times 2^{4}+\ldots \ldots \times+3^{k} \times 2^{k+1}=\frac{12}{5}\left(6^{k}-1\right)$ ……(1)
We will prove that P(k + 1) is true
$3 \times 2^{2}+3^{2} \times 2^{3}+3^{3} \times 2^{4}+\ldots \ldots \times+3^{k+1} \times 2^{k+2}=\frac{12}{5}\left(6^{k+1}-1\right)$
$3 \times 2^{2}+3^{2} \times 2^{3}+3^{3} \times 2^{4}+\ldots \ldots \times+3^{k+1} \times 2^{k+2}=\frac{12}{5}\left(6^{k+1}\right)-\frac{12}{5}$
$3 \times 2^{2}+3^{2} \times 2^{3}+3^{3} \times 2^{4}+\ldots \ldots \times+3^{k} \times 2^{k+1}+3^{k+1} \times 2^{k+2}=$
$\frac{12}{5}\left(6^{k+1}\right)-\frac{12}{5}$
…(2)
We have to prove P(k + 1) from P(k) ie (2) from (1)
From (1)
$3 \times 2^{2}+3^{2} \times 2^{3}+3^{3} \times 2^{4}+\ldots \ldots \times+3^{k} \times 2^{k+1}=\frac{12}{5}\left(6^{k}-1\right)$
Adding $3^{k+1} \times 2^{k+2}$ both sides
$3 \times 2^{2}+3^{2} \times 2^{3}+3^{3} \times 2^{4}+\ldots \ldots+3^{k} \times 2^{k+1}+3^{k+1} \times 2^{k+2}$
$=\frac{12}{5}\left(6^{k}-1\right)+3^{k+1} \times 2^{k+2}$
$=\frac{12}{5}\left(6^{k}-1\right)+3^{k} \times 2^{k} \times 12$
$=\frac{12}{5}\left(6^{k}-1\right)+6^{k} \times 12$
$=\left(6^{k}\left(\frac{12}{5}+12\right)-\frac{12}{5}\right)$
$=\left(\frac{72}{5}\right)-\frac{12}{5}$
$=\frac{12}{5}\left(6^{k+1}\right)-\frac{12}{5}$
$3 \times 2^{2}+3^{2} \times 2^{3}+3^{3} \times 2^{4}+\ldots \ldots+3^{k} \times 2^{k+1}+3^{k+1} \times 2^{k+2}$
$=\frac{12}{5}\left(6^{k+1}\right)-\frac{12}{5}$
Which is the same as $P(k+1)$
Therefore, $P(k+1)$ is true whenever $P(k)$ is true.
By the principle of mathematical induction, $P(n)$ is true for $x$
Where $n$ is a natural number
Put $k=n-1$
$3 \times 2^{2}+3^{2} \times 2^{3}+3^{3} \times 2^{4}+\ldots \ldots \times+3^{n} \times 2^{n+1}=\frac{12}{5}\left(6^{n}\right)-\frac{12}{5}$
$3 \times 2^{2}+3^{2} \times 2^{3}+3^{3} \times 2^{4}+\ldots \ldots \times+3^{n} \times 2^{n+1}=\frac{12}{5}\left(6^{n}-1\right)$
Hence proved