Using the principle of mathematical induction, prove each of the following for all n ϵ N:
$1.2+2.2^{2}+3.2^{3}+\ldots . .+n .2^{n}=(n-1) 2^{n+1}+2$
To Prove:
$1 \times 2^{1}+2 \times 2^{2}+3 \times 2^{3}+\ldots \ldots+n \times 2^{n}=(n-1) 2 n+1+2$
Let us prove this question by principle of mathematical induction (PMI)
Let $\mathrm{P}(\mathrm{n}): 1 \times 2^{1}+2 \times 2^{2}+3 \times 2^{3}+\ldots \ldots+n \times 2^{n}$
For $n=1$
LHS $=1 \times 2=2$
RHS $=(1-1) \times 2^{(1+1)}+2$
$=0+2=2$
Hence, LHS $=$ RHS
$P(n)$ is true for $n 1$
Assume $P(k)$ is true
$1 \times 2^{1}+2 \times 2^{2}+3 \times 2^{3}+k \times 2^{k}=(k-1) \times 2^{k+1}+2$ .............(1)
We will prove that P(k + 1) is true
1×
$2^{1}+2 \times 2^{2}+3 \times 2^{3}+(k+1) \times 2^{k+1}=((k+1)-1) \times 2^{(k+1)+1}+2$
$1 \times 2^{1}+2 \times 2^{2}+3 \times 2^{3}+(k+1) \times 2^{k+1}=(k) \times 2^{k+2}+2$
$1 \times 2^{1}+2 \times 2^{2}+3 \times 2^{3}+k 2^{k}+(k+1) \times 2^{k+1}=(k) \times 2^{k+2}+2$ ……(2)
We have to prove P(k + 1) from P(k), i.e. (2) from (1)
From (1)
$1 \times 2^{1}+2 \times 2^{2}+3 \times 2^{3}+k \times 2^{k}=(k-1) \times 2^{k+1}+2$
Adding $(k+1) \times 2^{k+1}$ both sides,
$(1 x$
$\left.2^{1}+2 \times 2^{2}+3 \times 2^{3}+k \times 2^{k}\right)+(k+1) \times 2^{k+1}=(k-1) \times 2^{k+1}+2+$
$(k+1) \times 2^{k+1}$
$=k \times 2^{k+1}-2^{k+1}+2+k \times 2^{k+1}+2^{k+1}$
$=2 k \times 2^{k+1}+2$
$=k \times 2^{k+2}+2$
$\left(1 \times 2^{1}+2 \times 2^{2}+3 \times 2^{3}+k \times 2^{k}\right)+(k+1) \times 2^{k+1}=k \times 2^{k+2}+2$
Which is the same as $P(k+1)$
Therefore, $P(k+1)$ is true whenever $P(k)$ is true
By the principle of mathematical induction, $P(n)$ is true for
Where $\mathrm{n}$ is a natural number
Put k = n - 1
$\left(1 \times 2^{1}+2 \times 2^{2}+3 \times 2^{3}\right)+n \times 2^{n}=(n-1) \times 2^{n+1}+2$
Hence proved.