Using the principle of mathematical induction, prove each of the following for all n ϵ N:
$\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+\ldots . .+\frac{1}{(3 n-2)(3 n+1)}=\frac{n}{(3 n+1)}$
To Prove:
$\frac{1}{1 \times 4}+\frac{1}{(4 \times 7)}+\ldots \ldots+\frac{1}{(3 n-2) \times(3 n+1)}=\frac{n}{(3 n+1)}$
Let us prove this question by principle of mathematical induction (PMI)
Let $P(n): \frac{1}{1 \times 4}+\frac{1}{(4 \times 7)}+\ldots \ldots+\frac{1}{(3 n-2) \times(3 n+1)}=\frac{n}{(3 n+1)}$
For n = 1
$\mathrm{LHS}=\frac{1}{1 \times 4}=\frac{1}{4}$
$\mathrm{RHS}=\frac{1}{(3+1)}=\frac{1}{4}$
Hence, $\mathrm{LHS}=\mathrm{RHS}$
$P(n)$ is true for $n=1$
Assume $P(k)$ is true
$=\frac{1}{1 \times 4}+\frac{1}{(4 \times 7)}+\ldots \ldots+\frac{1}{(3 k-2) \times(3 k+1)}=\frac{k}{(3 k+1)} \ldots \ldots(1)$
We will prove that P(k + 1) is true
$\mathrm{RHS}=\frac{k+1}{(3(k+1)+1)}=\frac{k+1}{(3 k+4)}$
$\mathrm{LHS}=\frac{1}{1 \times 4}+\frac{1}{(4 \times 7)}+\ldots \ldots+\frac{1}{(3(k+1)-2) \times(3(k+1)+1)}$
$=\frac{1}{1 \times 4}+\frac{1}{(4 \times 7)}+\ldots \ldots+\frac{1}{(3 k-2) \times(3 k+1)}+\frac{1}{(3 k+1) \times(3 k+4)}$
[Writing the second last term]
$=\frac{k}{(3 k+1)}+\frac{1}{(3 k+1) \times(3 k+4)}[$ Using 1]
$=\frac{1}{(3 k+1)}\left(k+\frac{1}{(3 k+4)}\right)$
$=\frac{1}{(3 k+1)}\left(\frac{\left(3 k^{2}+4 k+1\right)}{(3 k+4)}\right)$
$=\frac{k+1}{(3 k+4)}$
(Splitting the numerator and cancelling the common factor)
$=\mathrm{RHS}$
$\mathrm{LHS}=\mathrm{RHS}$
Therefore, $P(k+1)$ is true whenever $P(k)$ is true.
By the principle of mathematical induction, $P(n)$ is true for
Where $\mathrm{n}$ is a natural number
Hence proved.