Using the principle of mathematical induction, prove each of the following for all n ϵ N:
$\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\ldots .+\frac{1}{(2 n-1)(2 n+1)}=\frac{n}{(2 n+1)}$
To Prove:
$\frac{1}{1 \times 3}+\frac{1}{(3 \times 5)}+\ldots \ldots+\frac{1}{(2 n-1) \times(2 n+1)}=\frac{n}{(2 n+1)}$
Let us prove this question by principle of mathematical induction (PMI)
Let $\mathrm{P}(\mathrm{n}): \frac{1}{1 \times 3}+\frac{1}{(3 \times 5)}+\ldots \ldots+\frac{1}{(2 n-1) \times(2 n+1)}=\frac{n}{(2 n+1)}$
For n = 1
$\mathrm{LHS}=\frac{1}{1 \times 3}=\frac{1}{3}$
$\mathrm{RHS}=\frac{1}{(2+1)}=\frac{1}{3}$
Hence, LHS = RHS
P(n) is true for n = 1
Assume P(k) is true
$=\frac{1}{1 \times 3}+\frac{1}{(3 \times 5)}+\ldots \ldots+\frac{1}{(2 k-1) \times(2 k+1)}=\frac{k}{(2 k+1)} \ldots \ldots(1)$
We will prove that P(k + 1) is true
$\mathrm{RHS}=\frac{k+1}{(2(k+1)+1)}=\frac{k+1}{(2 k+3)}$
$\mathrm{LHS}=\frac{1}{1 \times 3}+\frac{1}{(3 \times 5)}+\ldots \ldots+\frac{1}{(2(k+1)-1) \times(2(k+1)+1)}$
$=\frac{1}{1 \times 3}+\frac{1}{(3 \times 5)}+\ldots \ldots+\frac{1}{(2 k-1) \times(2 k+1)}+\frac{1}{(2 k+1) \times(2 k+3)}$
[Writing the second last term]
$=\frac{k}{(2 k+1)}+\frac{1}{(2 k+1) \times(2 k+3)}[$ Using 1$]$
$=\frac{1}{(2 k+1)}\left(k+\frac{1}{(2 k+3)}\right)$
$=\frac{1}{(2 k+1)}\left(\frac{\left(2 k^{2}+3 k+1\right)}{(2 k+3)}\right)$
$=\frac{k+1}{(2 k+3)}$
(Splitting the numerator and cancelling the common factor)
= RHS
$\mathrm{LHS}=\mathrm{RHS}$
Therefore, $P(k+1)$ is true whenever $P(k)$ is true
By the principle of mathematical induction, $P(n)$ is true for $x$
Where $\mathrm{n}$ is a natural number
Hence proved.