Using the principle of mathematical induction, prove each of the following for all n ϵ N:
$\frac{1}{2 \times 5}+\frac{1}{(5 \times 8)}+\ldots \ldots+\frac{1}{(3 n-1) \times(3 n+2)}=\frac{n}{(6 n+4)}$
To Prove:
$\frac{1}{2 \times 5}+\frac{1}{(5 \times 8)}+\ldots \ldots+\frac{1}{(3 n-1) \times(3 n+2)}=\frac{n}{(6 n+4)}$
For n = 1
$\mathrm{LHS}=\frac{1}{2 \times 5}=\frac{1}{10}$
$\mathrm{RHS}=\frac{1 \times 1}{(6+4)}=\frac{1}{10}$
Hence, LHS = RHS
$P(n)$ is true for $n=1$
Assume $P(k)$ is true
$\frac{1}{2 \times 5}+\frac{1}{(5 \times 8)}+\ldots \ldots+\frac{1}{(3 k-1) \times(3 k+2)}=\frac{k}{(6 k+4)} \ldots \ldots(1)$
We will prove that P(k + 1) is true
$\mathrm{RHS}=\frac{k+1}{(6(k+1)+4)}=\frac{k+1}{(6 k+10)}$
$\mathrm{LHS}=\frac{1}{2 \times 5}+\frac{1}{(5 \times 8)}+\ldots \ldots+\frac{1}{(3 k-1) \times(3 k+2)}+\frac{1}{(3(k+1)-1) \times(3(k+1)+2)}$
[Writing the Last second term]
$=\frac{1}{2 \times 5}+\frac{1}{(5 \times 8)}+\ldots \ldots+\frac{1}{(3 k-1) \times(3 k+2)}+\frac{1}{(3(k+1)-1) \times(3(k+1)+2)}$
$=\frac{k}{(6 k+4)}+\frac{1}{(3(k+1)-1) \times(3(k+1)+2)}[U \operatorname{sing} 1]$
$=\frac{k}{(6 k+4)}+\frac{1}{(3 k+2) \times(3 k+5)}$
$=\frac{k}{(6 k+4)}+\frac{1}{(3 k+2) \times(3 k+5)}$
$=\frac{1}{(3 k+2)} \times\left[\frac{(3 k+2) \times(k+1)}{2 \times(3 k+5)}\right]$ (Taking LCM and simplifying)
$=\frac{k+1}{(6 k+10)}$
= RHS
Therefore, $\frac{1}{2 \times 5}+\frac{1}{(5 \times 8)}+\ldots \ldots+\frac{1}{(3 k-1) \times(3 k+2)}+\frac{1}{(3(k+1)-1) \times(3(k+1)+2)}=$
$\frac{k+1}{(6 k+10)}$
$\mathrm{LHS}=\mathrm{RHS}$
Therefore, $P(k+1)$ is true whenever $P(k)$ is true
By the principle of mathematical induction, $P(n)$ is true for
Where $\mathrm{n}$ is a natural number
Put k = n - 1
$\frac{1}{2 \times 5}+\frac{1}{(5 \times 8)}+\ldots \ldots \times+\frac{1}{(3 n-1) \times(3 n+2)}=\frac{n}{(6 n+4)}$
Hence proved.