Question:
Using short cut method, find the mean, variation and standard deviation for the data :
Solution:
To find: MEAN
Now, $\operatorname{Mean}(\overline{\mathrm{x}})=\frac{\sum \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}}{\sum \mathrm{f}_{\mathrm{i}}}$
$=\frac{390}{20}$
$=19.5$
To find: VARIANCE
Variance, $\sigma^{2}=\frac{\sum \mathrm{f}_{\mathrm{i}}\left(\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}\right)^{2}}{\mathrm{~N}}$
$=\frac{385}{20}$
$=19.25$
To find: STANDARD DEVIATION
Standard Deviation $(\sigma)=\sqrt{\text { Variance }}$
$=\sqrt{19.25}$
$=4.39$