Using short cut method, find the mean, variation and standard deviation for the data :
Here, we apply the step deviation method with A = 50 and h = 10
To find: MEAN
Now, $\operatorname{Mean}(\overline{\mathrm{x}})=\mathrm{a}+\mathrm{h}\left(\frac{\sum \mathrm{f}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}}{\sum \mathrm{f}_{\mathrm{i}}}\right)$
$\Rightarrow \overline{\mathrm{x}}=50+10\left(\frac{18}{45}\right)$
$\Rightarrow \overline{\mathrm{x}}=50+\frac{2 \times 18}{9}$
$\Rightarrow \overline{\mathrm{x}}=50+4$
$\Rightarrow \overline{\mathrm{x}}=54$
To find: VARIANCE
Variance, $\sigma^{2}=\frac{\mathrm{h}^{2}}{\mathrm{~N}^{2}}\left[\mathrm{~N} \sum \mathrm{f}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}^{2}-\left(\sum \mathrm{f}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}\right)^{2}\right]$
$=\frac{(10)^{2}}{(45)^{2}}\left[45 \times 66-(18)^{2}\right]$
$=\frac{10 \times 10}{45 \times 45}[2970-324]$
$=\frac{4}{81}[2646]$
$=130.67$
To find: STANDARD DEVIATION
Standard Deviation $(\sigma)=\sqrt{\text { Variance }}$
$=\sqrt{130.67}$
$=11.43$