Using short cut method, find the mean, variation and standard deviation for the data :
Here, we apply the step deviation method with A = 65 and h = 10
To find: MEAN
Now, $\operatorname{Mean}(\overline{\mathrm{x}})=\mathrm{a}+\mathrm{h}\left(\frac{\sum \mathrm{f}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}}{\sum \mathrm{f}_{\mathrm{i}}}\right)$
$\Rightarrow \overline{\mathrm{x}}=65+10\left(\frac{-15}{50}\right)$
$\Rightarrow \overline{\mathrm{x}}=65-\frac{150}{50}$
$\Rightarrow \overline{\mathrm{x}}=65-3$
$\Rightarrow \overline{\mathrm{x}}=62$
To find: VARIANCE
Variance, $\sigma^{2}=\frac{h^{2}}{N^{2}}\left[N \sum f_{i} y_{i}^{2}-\left(\sum f_{i} y_{i}\right)^{2}\right]$
$=\frac{(10)^{2}}{(50)^{2}}\left[50 \times 105-(-15)^{2}\right]$
$=\frac{100}{50 \times 50}[5250-225]$
$=\frac{1}{25}[5025]$
$=201$
To find: STANDARD DEVIATION
Standard Deviation $(\sigma)=\sqrt{\text { Variance }}$
$=\sqrt{201}$
$=14.17$