Question:
Using Rolle's theorem, find points on the curve $y=16-x^{2}, x \in[-1,1]$, where tangent is parallel to $x$-axis.
Solution:
The equation of the curve is
$y=16-x^{2}$ ....(1)
Let $\mathrm{P}\left(x_{1}, y_{1}\right)$ be a point on it where the tangent is parallel to the $x$-axis.
Then,
$\left(\frac{d y}{d x}\right)_{P}=0$ ......(2)
Differentiating (1) with respect to $x$, we get
$\frac{d y}{d x}=-2 x$
$\Rightarrow\left(\frac{d y}{d x}\right)_{P}=-2 x_{1}$
$\Rightarrow-2 x_{1}=0 \quad($ from $(2))$
$\Rightarrow x_{1}=0$
$P\left(x_{1}, y_{1}\right)$ lies on the curve $y=16-x^{2}$
$\therefore y_{1}=16-x_{1}^{2}$
When $x_{1}=0$
$y_{1}=16$
Hence, $(0,16)$ is the required point.