Using properties of determinants prove that:

Question:

Using properties of determinants prove that:

$\left|\begin{array}{ccc}3 x & -x+y & -x+z \\ x-y & 3 y & z-y \\ x-z & y-z & 3 z\end{array}\right|=3(x+y+z)(x y+y z+z x)$

Solution:

$=(x+y+z)(3 x y+3 y z+3 x z)$

$=3(x+y+z)(x y+y z+z x)$

Leave a comment