Using principle of mathematical induction, prove that $\sqrt{n}<\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\ldots+\frac{1}{\sqrt{n}}$ for all natural numbers $n \geq 2$.
Let $\mathrm{P}(n): \sqrt{n}<\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\ldots+\frac{1}{\sqrt{n}}$ for all natural numbers $n \geq 2$.
Step I: For $n=2$,
$\mathrm{P}(2)$ :
LHS $=\sqrt{2} \approx 1.414$
$\mathrm{RHS}=\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}=1+\frac{\sqrt{2}}{2} \approx 1+0.707=1.707$
As, LHS $<$ RHS
So, it is true for $n=2$.
Step II : For $n=k$,
Let $\mathrm{P}(k): \sqrt{k}<\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\ldots+\frac{1}{\sqrt{k}}$ be true for some natural numbers $n \geq 2$.
Step III : For $n=k+1$,
$\mathrm{P}(k+1):$
$\mathrm{LHS}=\sqrt{k+1}$
$\mathrm{RHS}=\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\ldots+\frac{1}{\sqrt{k}}+\frac{1}{\sqrt{k+1}}$
$>\sqrt{k}+\frac{1}{\sqrt{k+1}}$
As, $\sqrt{k+1}>\sqrt{k}$
$\Rightarrow \frac{\sqrt{k}}{\sqrt{k+1}}<1$
$\Rightarrow \frac{k}{\sqrt{k+1}}<\sqrt{k}$
$\Rightarrow \frac{k+1}{\sqrt{k+1}}-\frac{1}{\sqrt{k+1}}<\sqrt{k}$
$\Rightarrow \sqrt{k+1}-\frac{1}{\sqrt{k+1}}<\sqrt{k}$
$\Rightarrow \sqrt{k}+\frac{1}{\sqrt{k+1}}>\sqrt{k+1}$
i.e. LHS $<$ RHS
So, it is also true for $n=k+1$.
Hence, $\mathrm{P}(n): \sqrt{n}<\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\ldots+\frac{1}{\sqrt{n}}$ for all natural numbers $n \geq 2$.