Using prime factorization method, find which of the following numbers are perfect squares?
189, 225, 2048, 343, 441, 2916, 11025, 3549
(i) 189 = 3 x 3 x 3 x 7
Grouping them into pairs of equal factors:
189 = (3 x 3) x 3 x 7
The factors 3 and 7 cannot be paired. Hence, 189 is not a perfect square.
(ii) 225 = 3 x 3 x 5 x 5
Grouping them into pairs of equal factors:
225 = (3 x 3) x (5 x 5)
There are no left out of pairs. Hence, 225 is a perfect square.
(iii) 2048 = 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2
Grouping them into pairs of equal factors:
2048 = (2 x 2) x (2 x 2) x (2 x 2) x (2 x 2) x (2 x 2) x 2
The last factor, 2 cannot be paired. Hence, 2048 is not a perfect square.
(iv) 343 = 7 x 7 x 7
Grouping them into pairs of equal factors:
343 = (7 x 7) x 7
The last factor, 7 cannot be paired. Hence, 343 is not a perfect square.
(v) 441 = 3 x 3 x 7 x 7
Grouping them into pairs of equal factors:
441 = (3 x 3) x (7 x 7)
There are no left out of pairs. Hence, 441 is a perfect square.
(vi) 2916 = 2 x 2 x 3 x 3 x 3 x 3 x 3 x 3
Grouping them into pairs of equal factors:
2916 = (2 x 2) x (3 x 3) x (3 x 3) x (3 x 3)
There are no left out of pairs. Hence, 2916 is a perfect square.
(vii) 11025 = 3 x 3 x 5 x 5 x 7 x 7
Grouping them into pairs of equal factors:
11025 = (3 x 3) x (5 x 5) x (7 x 7)
There are no left out of pairs. Hence, 11025 is a perfect square.
(viii) 3549 = 3 x 7 x 13 x 13
Grouping them into pairs of equal factors:
3549 = (13 x 13) x 3 x 7
The last factors, 3 and 7 cannot be paired. Hence, 3549 is not a perfect square.
Hence, the perfect squares are 225, 441, 2916 and 11025.