Using mathematical induction prove that $\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}$ for all positive integers $n$.
To prove: $\mathrm{P}(n): \frac{d}{d x}\left(x^{n}\right)=n x^{n-1}$ for all positive integers $n$
For n = 1,
$\mathrm{P}(1): \frac{d}{d x}(x)=1=1 \cdot x^{1-1}$
$\therefore \mathrm{P}(n)$ is true for $n=1$
Let P(k) is true for some positive integer k.
That is, $\mathrm{P}(k): \frac{d}{d x}\left(x^{k}\right)=k x^{k-1}$
It has to be proved that P(k + 1) is also true.
Consider $\frac{d}{d x}\left(x^{k+1}\right)=\frac{d}{d x}\left(x \cdot x^{k}\right)$
$=x^{k} \cdot \frac{d}{d x}(x)+x \cdot \frac{d}{d x}\left(x^{k}\right)$ [By applying product rule]
$=x^{k} \cdot 1+x \cdot k \cdot x^{k-1}$
$=x^{k}+k x^{k}$
$=(k+1) \cdot x^{k}$
$=(k+1) \cdot x^{(k+1)-1}$
Thus, P(k + 1) is true whenever P (k) is true.
Therefore, by the principle of mathematical induction, the statement P(n) is true for every positive integer n.
Hence, proved.