Question:
Using factor theorem, show that g(x) is a factor of p(x), when
$p(x)=2 x^{4}+9 x^{3}+6 x^{2}-11 x-6, g(x)=x-1$
Solution:
Let:
$p(x)=2 x^{4}+9 x^{3}+6 x^{2}-11 x-6$
Here,
$x-1=0 \Rightarrow x=1$
By the factor theorem, (x
Thus, we have:
$p(1)=\left(2 \times 1^{4}+9 \times 1^{3}+6 \times 1^{2}-11 \times 1-6\right)$
$=(2+9+6-11-6)$
$=0$
Hence, $(x-1)$ is a factor of the given polynomial.