Question:
Using factor theorem, show that g(x) is a factor of p(x), when
$p(x)=2 \sqrt{2} x^{2}+5 x+\sqrt{2}, g(x)=x+\sqrt{2}$
Solution:
Let:
$p(x)=2 \sqrt{2} x^{2}+5 x+\sqrt{2}$
Here,
$x+\sqrt{2}=0 \Rightarrow x=-\sqrt{2}$
By the factor theorem, $(x+\sqrt{2})$ will be a factor of the given polynomial if $p(-\sqrt{2})=0$.
Thus, we have:
$p(-\sqrt{2})=\left[2 \sqrt{2} \times(-\sqrt{2})^{2}+5 \times(-\sqrt{2})+\sqrt{2}\right]$
$=(4 \sqrt{2}-5 \sqrt{2}+\sqrt{2})$
$=0$
Hence, $(x+\sqrt{2})$ is a factor of the given polynomial.