Question:
Using factor theorem, factorize of the polynomials:
$y^{3}-2 y^{2}-29 y-42$
Solution:
Given, $f(x)=y^{3}-2 y^{2}-29 y-42$
The constant in f(x) is - 42
The factors of -42 are ± 1, ± 2, ± 3, ± 6, ± 7, ± 14, ± 21,± 42
Let, y + 2 = 0
=> y = – 2
$f(-2)=(-2)^{3}-2(-2)^{2}-29(-2)-42$
= -8 -8 + 58 – 42
= 0
So, (y + 2) is the factor of f(y)
Now, divide f(y) with (y + 2) to get other factors
By, long division
$y^{2}-4 y-21$
$y+2 y^{3}-2 y^{2}-29 y-42$
$y^{3}+2 y^{2}$
$(-) \quad(-)$
$-4 y^{2}-29 y$
$-4 y^{2}-8 y$
(+) (+)
- 21y – 42
- 21y – 42
(+) (+)
0
$\Rightarrow y^{3}-2 y^{2}-29 y-42=(y+2)\left(y^{2}-4 y-21\right)$
Now,
$y^{2}-4 y-21=y^{2}-7 y+3 y-21$
= y(y – 7) +3(y – 7)
= (y – 7)(y + 3)
Hence, $y^{3}-2 y^{2}-29 y-42=(y+2)(y-7)(y+3)$