Question:
Using factor theorem, factorize of the polynomials:
$2 y^{3}-5 y^{2}-19 y+42$
Solution:
Given, $f(x)=2 y^{3}-5 y^{2}-19 y+42$
The constant in f(x) is + 42
The factors of 42 are ± 1, ± 2, ± 3, ± 6, ± 7, ± 14, ± 21,± 42
Let, y – 2 = 0
=> y = 2
$f(2)=2(2)^{3}-5(2)^{2}-19(2)+42$
= 16 – 20 – 38 + 42
= 0
So, (y – 2) is the factor of f(y)
Now, divide f(y) with (y – 2) to get other factors
By, long division method
$2 y^{2}-y-21$
$y-22 y^{3}-5 y^{2}-19 y+42$
$2 y^{3}-4 y^{2}$
$(-) \quad(+)$
$-y^{2}-19 y$
$-y^{2}+2 y$
(+) (-)
- 21y + 42
- 21y + 42
(+) (-)
0
$=>2 y^{3}-5 y^{2}-19 y+42=(y-2)\left(2 y^{2}-y-21\right)$
Now,
$2 y^{2}-y-21$
The factors are (y + 3) (2y – 7)
Hence, $2 y^{3}-5 y^{2}-19 y+42=(y-2)(y+3)(2 y-7)$