Question:
Using factor theorem, factorize of the polynomials:
$x^{3}-10 x^{2}-53 x-42$
Solution:
Given,
$f(x)=x^{3}-10 x^{2}-53 x-42$
The constant in f(x) is - 42
The factors of - 42 are ± 1, ± 2, ± 3, ± 6, ± 7, ± 14, ± 21,± 42
Let, x + 1 = 0
=> x = - 1
$f(-1)=(-1)^{3}-10(-1)^{2}-53(-1)-42$
= -1 – 10 + 53 – 42
= 0
So., (x + 1) is the factor of f(x)
Now, divide f(x) with (x + 1) to get other factors
By long division,
$x^{2}-11 x-42$
$x+1 x^{3}-10 x^{2}-53 x-42$
$x^{3}+x^{2}$
(-) (-)
$-11 x^{2}-53 x$
$-11 x^{2}-11 x$
(+) (+)
- 42x – 42
- 42x – 42
(+) (+)
0
$\Rightarrow x^{3}-10 x^{2}-53 x-42=(x+1)\left(x^{2}-11 x-42\right)$
Now,
$x^{2}-11 x-42=x^{2}-14 x+3 x-42$
= x(x – 14) + 3(x – 14)
= (x + 3)(x – 14)
Hence, $x^{3}-10 x^{2}-53 x-42=(x+1)(x+3)(x-14)$