Using Euler's formula find the unknown:
We know that the Euler's formula is: $\mathrm{F}+\mathrm{V}=\mathrm{E}+2$
(i)
The number of vertices $\mathrm{V}$ is 6 and the number of edges $\mathrm{E}$ is 12 .
Using Euler's formula:
$\mathrm{F}+6=12+2$
$\mathrm{~F}+6=14$
$\mathrm{~F}=14-6$
$\mathrm{~F}=8$
So, the number of faces in this polyhedron is 8 .
(ii)
Faces, $F=5$
Edges, $\mathrm{E}=9$.
We have to find the number of vertices.
Putting these values in Euler's formula:
$5+\mathrm{V}=9+2$
$5+\mathrm{V}=11$
$\mathrm{~V}=11-5$
$\mathrm{~V}=6$
So, the number of vertices in this polyhedron is 6 .
(iii)
Number of faces $F=20$
Number of vertices $\mathrm{V}=12$
Using Euler's formula:
$20+12=\mathrm{E}+2$
$32=\mathrm{E}+2$
$\mathrm{E}+2=32$
$\mathrm{E}=32-2$
$\mathrm{E}=30$
So, the number of edges in this polyhedron is 30 .