Using determinants, find the equation of the line joining the points
(i) $(1,2)$ and $(3,6)$
(ii) $(3,1)$ and $(9,3)$
(i)
Given: $A=(1,2)$ and $B=(3,6)$
Let the point $P$ be $(x, y) .$ So,
Area of triangle $A B P=0$
$\Rightarrow \Delta=\frac{1}{2}\left|\begin{array}{lll}1 & 2 & 1 \\ 3 & 6 & 1 \\ x & y & 1\end{array}\right|=0$
$\Rightarrow 1(6-y)-2(3-x)+1(3 y-6 x)=0$
$\Rightarrow 6-y-6+2 x+3 y-6 x=0$
$\Rightarrow 2 y-4 x=0$
$\Rightarrow y=2 x$
(ii)
Given: $A=(3,1)$ and $B=(9,3)$
Let the point $P$ be $(x, y) .$ So,
Area of triangle $A B P=0$
$\Rightarrow \Delta=\frac{1}{2}\left|\begin{array}{lll}3 & 1 & 1 \\ 9 & 3 & 1 \\ x & y & 1\end{array}\right|=0$
$\Rightarrow 3(3-y)-1(9-x)+1(9 y-3 x)=0$
$\Rightarrow 9-3 y-9+x+9 y-3 x=0$
$\Rightarrow-2 x+6 y=0$
$\Rightarrow x=3 y$