Question:
Using Binomial Theorem, evaluate (96) $^{3}$
Solution:
96 can be expressed as the sum or difference of two numbers whose powers are easier to calculate and then, binomial theorem can be applied.
It can be written that, 96 = 100 – 4
$\therefore(96)^{3}=(100-4)^{3}$
$={ }^{3} \mathrm{C}_{0}(100)^{3}-{ }^{3} \mathrm{C}_{1}(100)^{2}(4)+{ }^{3} \mathrm{C}_{2}(100)(4)^{2}-{ }^{3} \mathrm{C}_{3}(4)^{3}$
$=(100)^{3}-3(100)^{2}(4)+3(100)(4)^{2}-(4)^{3}$
$=1000000-120000+4800-64$
$=884736$