Use the distributivity of multiplication of rational numbers over addition to simplify.
(a) (3/5) × [(35/24) + (10/1)]
We know that the distributivity of multiplication of rational numbers over addition, a × (b + c) = a × b + a × c
Where, a =3/5, b =35/24, c = 10/1
Then, (3/5) × [(35/24) + (10/1)] = ((3/5) × (35/24)) + ((3/5) × (10/1))
= ((1/1) × (7/8)) + ((3/1) × (2/1))
= (7/8) + (6/1)
= (7 + 48)/8
= 55/8
=
(b) (-5/4) × [(8/5) + (16/15)]
Solution:-
We know that the distributivity of multiplication of rational numbers over addition, a × (b + c) = a × b + a × c
Where, a =-5/4, b =8/5, c = 16/15
Then, (-5/4) × [(8/5) + (16/15)] = ((-5/4) × (8/5)) + ((-5/4) × (16/15))
= ((-1/1) × (2/1)) + ((-1/1) × (4/3))
= (-2/1) + (-4/3)
= (-6 – 4)/3
= -10/3
=-3 1/3
(c) (2/7) × [(7/16) – (21/4)]
Solution:-
We know that the distributivity of multiplication of rational numbers over subtraction, a × (b – c) = a × b – a × c
Where, a = -2/7, b = 7/16, c = 21/4
Then, (2/7) × [(7/16) – (21/4)] = ((2/7) × (7/16)) – ((2/7) × (21/4))
= ((1/1) × (1/8)) – ((1/1) × (3/2))
= (1/8) – (3/2)
= (1 – 12)/8
= -11/8
(d) ¾ × [(8/9) – 40]
Solution:-
We know that the distributivity of multiplication of rational numbers over subtraction, a × (b – c) = a × b – a × c
Where, a = -2/7, b = 7/16, c = 21/4
Then, (¾) × [(8/9) – (40)] = ((¾) × (8/9)) – ((¾) × (40))
= ((1/1) × (2/3)) – ((3/1) × (10))
= (2/3) – (30)
= (2 – 90)/3
= -88/3